

1

An Introduction to the Framework WebMVC

Quick Reference Guide

2

CONTENTS

1. The PHP WebMVC frawework __ 3

1.1 Software framework __ 3

1.2 What is WebMVC? __ 3

1.3 Top level architecture for the execution of WebMVC controllers ______________________ 4

2. Running a controller ___ 5

3. View __ 8

 3.1 Dynamic content __ 11

 3.2 Dynamic block __ 13

 3.3 Block hiding __ 17

4. Model ___ 21

5. System decomposition __ 25

6. Structuring MVC units __ 30

 6.1. Coding guidelines ___ 31

 6.2 Hierarchical MVC ___ 33

 6.3 MVC inheritance __ 38

7. Software components __ 40

 7.1 Data repetition __ 43

 7.2 Paginator ___ 48

8. Internationalization and localization __ 55

9. Security ___ 61

 9.1 Authentication ___ x

 9.2 Role Based Access Control __ x

10. The benefits of WebMVC ___ x

3

1. The PHP WebMVC framework

1.1 Software framework

A software framework is an abstraction in which software providing generic functionality

can be selectively changed by additional user-written code, thus providing application-

specific software.

A software framework provides a standard way to build and deploy applications. It is a

universal, reusable software environment that provides particular functionality as part of a

larger software platform to facilitate development of software applications, products and

solutions. Software frameworks may include support programs, compilers, code libraries,

tool sets, and application programming interfaces (APIs) that bring together all the

different components to enable development of a project or system.

You can find this definition of software and some distinguishing features of software

frameworks here: https://en.wikipedia.org/wiki/Software_framework

1.2 What is WebMVC?
WebMVC is a powerful PHP framework for web application developers and designers. The

main goals of WebMVC are:

 Simplify your code and provide facilities that are useful for the rapid prototyping of a

WEB application;

 Organize an application in subsystems using the Model View Controller (MVC)

architecture to cope with the complexity of big projects;

 Improve the collaboration process among people having different skills (e.g. GUI, PHP

and Database designers and developers);

 Use standard web technologies without introducing new ad hoc syntax.

 Provide generalized software components to implements some recurring problems in

web development.

 Provide an ORM to interact with MySQL database.

The PHP framework WebMVC is a software an open source project made by Rosario

Carvello. You can find the code here:

https://github.com/rcarvello/webmvcframework/wiki

and several examples ready to use here

https://www.webmvcframework.com

https://en.wikipedia.org/wiki/Abstraction_(computer_science)
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Software_environment_(disambiguation)
https://en.wikipedia.org/wiki/Software_platform
https://en.wikipedia.org/wiki/Software_application
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Software_component
https://en.wikipedia.org/wiki/Software_project
https://en.wikipedia.org/wiki/Software_system
https://en.wikipedia.org/wiki/Software_framework
https://github.com/rcarvello/webmvcframework/wiki
https://www.webmvcframework.com/

4

1.3 Top level architecture for the execution of

WebMVC controllers

Preconditions

In order to develop using WebMVC framework you need:

 Operating System: Linux, Mac or Windows

 Server: Apache web server with mod_rewrite enabled

 Database: MySql (from 5.0 to the latest version)

 Programming language: PHP (5.3+) with DOM and mysqli extensions

Installation

To install the framework:

1. download it from Github

2. create a project in the root folder of your web server

3. import all the directories downloaded from Github into the project folder

4. modify the following lines of config/application.config.php" according to your db and

web server

/**
 * MySQL User
 */
define("DBUSER","PUT_YOUR_USERNAME");

/**
 * MySQL Password
 */
define("DBPASSWORD","PUT_YOUR_PASSWORD");

/**
 * MySQL Database
 */
define("DBNAME","PUT_YOUR_DB_NAME");

/**
 * MySQL Port
 */
define('DBPORT', '3306');

/**
 * Defines a constant for site URL
 * @note without the ending slash
 * @example: http://localhost/myproject
 */
define("SITEURL","http://PUT_YOUR_HOST/PUT_YOUR_WEB_FOLDER");

5

The fig. 1.1 shows a deployment diagram with the main software components necessary to

run WebMVC applications. The diagram also shows the control flow triggered by an http

request toward a server that will render a response. With this software architecture, two

possible execution scenarios are possible. The first control flow arises from a usual http

request aiming at the execution of a php file:

1. The client browser forwards an http request.

1.a. The web server receives the request and retrieves the php file from the web folder.

2. The web server invokes the execution of a PHP interpreter passing it the retrieved

 file to run. Eventually, the php file interacts with MySQL to populate the HTML page

 that must be sent back to the client; otherwise, the flow continues to the point 4.

3. MySQL retrieves data from one or more DB tables.

4. The HTML page is created.

5. The web server returns the response to the client.

The second scenario comes into play when the request aims at the execution of a php

controller stored in the area of the host web folder where the WebMVC framework

resides. When the web server do not match the file name appearing in the URL with a

file name in the host web folder, it calls the rewrite engine that applies the rewriting

rules established by WebMVC (cfr. Section 2 and section 5) to transform an URL string in

a file name that represents a php controller. The flow of control is similar to that

reported above where you have to substitute the points 1.a with the point 1.b:

1.b. The web server receives the request and retrieves a php controller in the portion of

 the host web folder devoted to WebMVC.

Fig. 1.1. The architecture of software components necessary for the execution

 of WebMVC applications.

6

2. Running a controller

Coding and running your first example is simple. To create a custom controller HelloWorld

create a HelloWorld.php file in the controllers directory.

Fig. 2.1. The directory structure of WebMVC.

Then write a class called HelloWorld that extends the framework\Controller class.

// Example 2.1. Your first controller

<?php

namespace controllers;

use framework\Controller;

class HelloWorld extends Controller
{

public function sayHello()
 {
 echo "Hello World";
 }
}

As you can see from the code, to create a controller we need to:

 use the class framework\Controller

 extend it with by writing the subclass HelloWorld

7

In HelloWorld it is defined a method sayHello that displays a message. In general, a

controller has the responsibility to handle the logic and the control flow of a software

application. Within WebMVC, frequently invoked methods are defined in the

class Controller located into the directory framework, and that's why HelloWorld extends

Controller. Even if in our first example any Controller method is invoked we shall see, in

the following, how a subclass of Controller can take advantage of its methods.

At this point, the only thing we have to understand is how to instantiate a controller and

execute the method. To do this, open your favorite web browser and type the following

address:

http://localhost/myproject/hello_world/say_hello

You should see:

Hello World

Congratulations, you have executed your first example using WebMVC!

But how exactly it is translated the URL into a controller call? The URL you wrote calls

the sayHello method of a HelloWorld class in the controllers directory. First, WebMVC

automatically changes the syntax from lower case and underscores as follows:

hello_world -> HelloWorld // the class name is transformed in PascalCase notation

say_hello -> sayHello // the method name is transformed in camelCase notation

Then, after this transformation, the sayHello method of the HelloWorld controller is called.

In general, to run a controller method you should use the following syntax:

<your server domain>/<controller name>/<method name>

This schema can be used when you have a single project to manage. In the case of two or

more project existing within your web server root, you should use the following syntax:

<your server domain>/<project name>/<controller name>/<method name>

8

WebMVC and OOP programming

WebMVC requires that you create a controller that must extend the framework\Controller

class. Then, just by adding public methods inside it, you will be able to implement the

necessary functionalities. The only knowledge you need is about OOP programming.

The next example shows some concept regarding the interaction between WebMVC and

OOP programming. Specifically, it is about the parameters and visibility of methods in a

Controller. Let's add two new methods to the HelloWorld class:

sayHelloMessage($message) that is public and accepts a parameter $message, and

cantSayHello() that is a protected method.

// Example 2.2. Calling controller’s methods

<?php

namespace controllers;

use framework\Controller;

class HelloWorld extends Controller
{

 public function sayHello()
 {
 echo "Hello world";
 }

 public function sayHelloMessage($message)
 {
 echo "Hello $message";
 }

 protected function cantSayHello()
 {
 echo "This method cannot be called from Url";
 }
}

Then type the following address:

http://localhost/hello_world/say_hello_message/Mark

http://localhost/hello_world/say_hello_message/John

Your output will be:

Hello Mark

Hello John

You can note we request the execution of a method sayHelloMessage specifying its

parameter by typing its value into the URL by using a slash after the requested method

9

name. This is the rule for passing one or multiple parameters to a method: simply specify

the corresponding values into URL and separate them with slashes. Take care of passing

the exact numbers of values that a method requires as input parameters.

If you try to type:

http://localhost/hello_world/say_hello_message/Mark/John or

http://localhost/hello_world/cant_say_hello

in both cases, you will obtain an exception. In the first, you have inserted wrong numbers

of parameters for the method sayHelloMessage, while in the second you have no access to

the method cantSayHello because it is not public.

Summary

The examples 2.1.and 2.2 show how simple is to start coding with WebMVC and PHP

programming. Just design and implement your application writing controller classes and

public methods, and the framework will execute them as common HTTP requests. The URL

notation used by WebMVC requires typing the HTTP request writing in lower case the

names of controllers and methods, by separating them with a slash. It also requires an

underscore for separating the occurrence of composite names. Therefore, you don't need

to configure the execution of a particular controller, but you just use the URL notation

proposed by WebMVC. This simplicity derives from the convention over configuration (cit.)

approach that the framework uses for object instantiation in order to avoid tedious

operations of configuration.

3. View

3.1 Static design

A view has the responsibility to organize and show data in graphical structures. With

WebMVC, a framework\View class manages this responsibility operating on a template

containing HTML code. To write an application that uses a static HTML code, you can:

 create a template file containing the HTML of the page that you want to show

 use the framework\View class provided by WebMVC to manage the template

 define a controller that manages the logic and the control flow

In WebMVC, the controller is the only entity that allows you to instantiate and run code

starting from an HTTP request. Therefore, if you need to show an HTML page, you must

https://en.wikipedia.org/wiki/Convention_over_configuration

10

create a controller that: a) uses an instance of framework/View that manages the HTML file,

and b) provides the output.

We can write an example that shows an HTML file, for example a Home page, into the

browser following the steps described above. To do this, simply create the file

templates\home.html.tpl (note that the name home is in lowercase) containing the HTML of

the web page and put it in the directory templates:

// example 3.1.a: the template home.html.tpl

<!DOCTYPE html>
<html>
 <head>
 <title>Site home page</title>
 </head>
 <body>
 <p>Welcome to the site Home Page</p>
 </body>
</html>

The file must have a .tpl extension in order to be accepted by WebMVC. Then, create the

Home controller Home.php and put it in the directory controllers (pay attention to the

comments):

// example 3.1.b: the controller Home.php

<?php

namespace controllers;

use framework\Controller;
use framework\View;

class Home extends Controller
{
 /**
 * Home constructor.
 * @override parent constructor
 */
 public function __construct()
 {
 /**
 * A reference to the file: templates/home.html.tpl
 * @note Do not to specify the file extension ".html.tpl".
 */
 $tplName = "home";

 /**
 * Set the view variable with a new object of type framework\View.
 * @note: We create the View object passing reference to the template home.
 */
 $this->view = new View($tplName);

 /**

11

 * The parent class Controller handle the necessary operations to print the
 * output. First, it uses the created View object to load the file containing
 * the template, then it renders the template in the browser.
 */

 parent::__construct($this->view);
 }

}

Finally, run the controller by typing the following address into your web browser:

http://localhost/myproject/home

You should see the Site home page with the message

Welcome to the site Home Page

In this example we invoke the controller Home without passing any method. The flow

proceeds invoking its constructor that: 1) declares the template to use, b) passes the

template to the framework\View class responsible for the template management, and c)

invokes the constructor of the parent class (framework\Controller) for the template

rendering into your browser.

Summary

The example 3.1 highlights the basic flow of control for the execution of a program within

WebMVC where a controller and a view cooperate to do a job. It is analogous to the

control flow of a command interpreter that:

1. Accept a command (WebMVC accepts an HTTP request and calls the corresponding

controller to handle the request)

2. Execute the command (the controller executes the command using framework\View for

the management of a template)

12

3. Print the output (the controller rends the HTML into your browser)

This flow will be reviewed in section 4 after the introduction of the model component.

There are circumstances where we need to introduce a new view defined by the developer

because the framework\View class alone is no longer enough. This is the case of dynamic

views for the dynamic content management that change the initial page content with data

coming from sources such as keyboard or database.

3.2 Dynamic content

The code described in the previous example shows in the browser the static data

contained in the file home.html.tpl. Now, consider the typical situation where you have to

manage data dynamically in the view. WebMVC let you design a view class, as an extension

of framework\View, that will be responsible for managing the corresponding template.

The concept of placehoder

In the following HTML code we augment the previous version of home.html.tpl. Now,

together with the static content, we want to show 'Welcome {PersonName}' where

{PersonName} can assume different values. With {PersonName} we declare a placeholder, a

string delimited by braces and located somewhere in the template, that we want to

substitute with another string. Here it is the code of the new home.html.tpl in which we

wish to replace the placeholder {PersonName} with the name of a person.

// example 3.2.a. Inserting a placeholder in the template home.html.tpl

<!DOCTYPE html>
<html>
 <head>
 <title>Site home page</title>
 </head>
 <body>
 <p>Welcome to the site Home Page</p>

 <p>Welcome {PersonName} </p>
 </body>
</html>

We shall use the same class name, that is Home, for both the controller and the view that we

need to run the example; the same convention will be applied to the model classes in the

following sections. The unique identification of a class is possible using the familiar

concept of absolute path of a file within a file system. For example, the controller Home.php

is identified by the path myproject\controllers\Home.php, while the view Home.php is

identified by myproject\views\Home.php. This convention allows avoiding the proliferation of

13

names in complex projects and will be used within php classes also using the notion of

php namespaces. See the positioning of the Home classes for the controller and the view, as

well as the template home.html.tpm, in the directory hierarchy of WebMVC. Note that in the

case of home.html.tpm, the name home is in lowercase because it is HTML code instead of a

class.

Fig. 3.1. The naming convention for custom defined files.

The setVar method

The code of the Home view class, written to handle the dynamic aspects of a page, contains

the setVar() method inherited from the framework\View class. In this example, the method

setvar() is used to replace the placeholder {PersonName} with the name of a person

represented by the parameter $name of the method setPersonName($name).

// example 3.2.b: Defining a view that performs a placeholder substitution

<?php

namespace views;
use framework\View;

class Home extends View
{
 public function __construct()
 {
 $tplName = "home";
 parent::__construct($tplName);
 }

 public function setPersonName($name){

14

 // setVar is a method inherited from the framework\View class
 $this->setVar("PersonName",$name);
 }
}

At runtime, by invoking setPersonName("Mark"), the static HTML will be dynamically

modified as follows:

// example 3.2.c: The placeholder substitution in the file home.html.tpl

<!DOCTYPE html>
<html>
 <head>
 <title>Site home page</title>
 </head>
 <body>
 <p>Welcome to the site Home Page</p>

 <p>Welcome Mark</p>
 </body>
</html>

Bear in mind that:

 If multiple placeholders {PersonName} are in a single HTML file then they will be all replaced

in one single setVar() code.

 You must call a setVar() method after the view has been initialized in the controller.

 You must not call two times the same setVar(), because if no placeholder will be found

then an exception will be thrown.

Finally, we rewrite our Home controller class to call the setPersonName($name) method.

The controller provides the method sayWelcome() in order to accept the sayWelcome

command from the user's browser. The management of the template is now done by the

user-defined Home view.

// example 3.2.d: the controller that say welcome to the people provided as parameter

<?php

namespace controllers;

use framework\Controller;
use views\Home as HomeView;

class Home extends Controller
{
 public function __construct() {
 // set the view variable to an instance of the HomeView class
 $this->view = new HomeView();
 parent::__construct($this->view);
 }

15

 public function sayWelcome($name) {
 $this->view->setPersonName($name);
 $this->render();
 }
}

You can run the method sayWelcome() with a parameter to say Welcome to a person.

Simply type from your browser the following address:

http://localhost/myproject/home/say_welcome/Mark

http://localhost/myproject/home/say_welcome/John

Your output will be:

Welcome Mark

Welcome John

3.3 Dynamic block

We can extend the idea of dynamic substitution of a placeholder with a single name to the

case where we have to show a list of names. With the framework, you can use the concept

of block. A block is nothing more than a piece of HTML code delimited by two comments

that mark its endpoints. A block is usually subject to a transformation in order to render

dynamic content in the browser. The management of blocks is a useful feature, for

example, when we have to render a list of records coming from a database.

How can you create a block? Suppose that we have a list of people whose names must be

shown in a browser. The file user_list.html.tpl provides the static structure of a table in

which there exist two placeholders to change: {FirstName} and {LastName}.

// example 3.3.a: the template user_list.html.tpl for the substitution of the block
“User”

<html>
<head>
 <title>User List</title>
</head>

<body>
 <h3>This example shows Blocks usage for data repetition inside a static GUI</h3>
 <table>
 <tr>
 <th>FIRST NAME</th>
 <th>LAST NAME</th>
 </tr>

 <!-- BEGIN User -->

16

 <tr>
 <td>{FirstName}</td>
 <td>{LastName}</td>
 </tr>
 <!-- END User -->
 </table>
 </body>
</html>

In the HTML code, two comments are present; they together wrap the block of code that

will be dynamically replaced many times in the HTML file. These comments mark the BEGIN

and the END of a block of name Users. This means that WebMVC will be able to recognize

the block. Now, we can write the code of views/UserList and controllers/UserList in order

to show a list of people names.

// Example 3.3.b: the view UserList that substitutes
// an array of people names to the block “Users”

<?php
namespace views;

use framework\View;

class UserList extends View
{
 public function __construct($tplName = null)
 {
 if (empty($tplName)) {
 $tplName = "/user_list";
 }
 parent::__construct($tplName);
 }

 public function setUserList($userList)
 {
 $this->openBlock("User");
 foreach ($userList as $user){
 $this->setVar("FirstName",$user["FirstName"]);
 $this->setVar("LastName",$user["LastName"]);
 $this->parseCurrentBlock();
 }
 $this->setBlock();
 }
}

Note that the constructor of the class UserList receives the parameter $tplName; this allows

to generalize the class behaviour because it can be used in connection with whatever

template has the necessity to show a user list. However, the class declares the default

template user_list to use when the constructor does not receive the name of a template.

In this example we use the template user_list. We have created a method in the view that

uses the block User and processes it with all the values contained into the $userList

received as a parameter. Specifically, we:

17

 Consider the block Users by invoking the openBlock method inherited

from framework\View. This means that, from now, each future action of the setVar()

method will be restricted to the HTML contained inside the block User.

 Then, loop inside $userList and for each element we:

i. Call the setVar() method to replace the placeholders {FirstName} and {LastName}

with the value represented by the current element referenced by $userList;

ii. Call the parseCurrentBlock() to instruct the View to process the opened block (that

contains {FirstName} and {LastName}). Then, if further people remain in $userList,

the method arranges the things for the next block. This means that the placeholders

contained in the block will be valorized, by invoking once again setVar, as long as

there is a couple of name and surname in $userList.

 By calling the setBlock method, we close the active opened block; as a result, its

content will result dynamically valorized and ready to be shown.

// Example 3.3.c: the controller UserList that accept
// a user command to show a list of people names

<?php
namespace controllers;

use framework\Controller;
use views\UserList as UserListView;

class UserList extends Controller
{
 public function __construct() {
 $this->view = new UserListView();
 parent::__construct($this->view);
 }

 public function showUserList() {
 $users = array (
 array("FirstName" => "John", "LastName" => "Red"),
 array("FirstName" => "Mark", "LastName" => "White"),
 array("FirstName" => "Diana", "LastName" => "Brown"),
);
 $this->view->setUserList($users);
 $this->render();
 }
}

Now you can run the controller's method showUserList to get a list of people:

18

Fig. 3.2. Showing a user list using a template block.

3.4 Block hiding

A recurrent problem of GUI design and implementation is the need to hide parts of an

HTML page. This occurs, for example, in a multiuser software application where a high-

level role could have full access to the software functionalities presented in a page, while a

low-level role could only have restricted access. The block hiding capability of WebMVC

provides a simple way to hide blocks inside HTML pages.

The next example starts from Example 3.3. We use here a richer template to manage the

user interaction so that a list of people can be visualized or hidden. To get this behaviour,

we write the template

toggle_user_list.html.tpl

and the controller

ToggleUserList

Invoking the controller ToggleUserList you get the output:

19

 Fig. 3.3. Showing and hiding a user list.

During the interaction, the user can hide either the user list, clicking on the button “Hide

user list”, or the whole content clicking on the button “Hide content”. Since the HTML

template toggle_user_list.html.tpl contains Bootstrap code to improve the graphical

aspect of the presentation that we shall use often in the following, we first describe the

HTML that will be reused:

<!-- Shared code 3.4.1: The Bootstrap core CSS declarations used in the examples -->

 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <!-- Bootstrap core CSS -->
 <link href="http://cdnjs.cloudflare.com/ajax/libs/twitter-
bootstrap/3.3.4/css/bootstrap.min.css" rel="stylesheet" media="screen">

 <!-- HTML5 shim and Respond.js IE8 support of HTML5 elements and media queries -->
 <!--[if lt IE 9]>
 <script
src="http://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.js"></script>
 <script
src="http://cdnjs.cloudflare.com/ajax/libs/respond.js/1.4.2/respond.js"></script>
 <![endif]-->

<!-- Shared code 3.4.2: jQuery (necessary for Bootstrap's JavaScript plugins) -->

<script
src="http://cdnjs.cloudflare.com/ajax/libs/jquery/2.1.3/jquery.min.js"></script>

<!-- Include all compiled plugins (below), or include individual files as needed -->

20

<script src="http://cdnjs.cloudflare.com/ajax/libs/twitter-
bootstrap/3.3.4/js/bootstrap.min.js">
</script>

There are four blocks in the HTML body whose content is recalled by their names:

ExampleDescription, Warning, UserList, and User that, in its turn, is an inner block of

UserList.

// Example 3.4.a. The template toggle_user_list.html.tpl to show and hide a list of
people

<!DOCTYPE html>
<html>
<head>
<title>Block hiding</title>
 <!—- PUT THE SHARED CODE 3.4.1 HERE -->
</head>

<body>
<div class="container">

 <!-- BEGIN ExampleDescription -->
 <h3> This example shows data repetition and block hiding</h3>
 <!-- END ExampleDescription -->

 Show
 Hide
 users list
 Hide
content

 <!-- BEGIN Warning -->
 <div class="well h3">
 You are not allowed to view users list
 </div>
 <!-- END Warning -->

 <!-- BEGIN UserList -->
 <div class="table-responsive">
 <table class="table table-bordered table-hover table-striped">
 <tr>
 <th>First name</th>
 <th>Last name</th>
 </tr>

 <!-- BEGIN User -->
 <tr>
 <td>{FirstName}</td>
 <td>{LastName}</td>
 </tr>
 <!-- END User -->
 </table>
 </div>
 <!-- END UserList -->

21

</div>

<!-- PUT THE SHARED CODE 3.4.2 HERE -->

</body>
</html>

Now the controller code. First of all, the controller reuse the view UserList of example 3.3.b

passing it the template name toggle_user_list. Remember that the events “click on Show”,

“click on Hide user list”, and “click on Hide content” that happen when the user interact

with the page shown in fig. 3.3, are defined in the template together with a link that specify

the URL of the corresponding method for the event handling. There is a method for each

event: showUserList(), hideUserList() and hideContent(). Each method perform the

appropriate processing when the corresponding event happens. For example, the

controller acts on the blocks of toggle_user_list.html.tpl, calling the method hide()

provided by the framework class View with the name of the block to hide.

Example 3.4.b: The controller ToggleUserList. It accept commands to show or hide a user
list

<?php

namespace controllers;

use framework\Controller;
use views\UserList as UserListView;

class ToggleUserList extends Controller {

 public function __construct() {
 $this->view = new UserListView("/toggle_user_list");
 parent::__construct($this->view);
 }

 public function showUserList() {
 $userList = array (
 array("FirstName" => "John", "LastName" => "Red"),
 array("FirstName" => "Mark", "LastName" => "White"),
 array("FirstName" => "Diana", "LastName" => "Brown"));
 $this->view->setUserList($userList);
 $this->view->hide("Warning");
 $this->render();
 }

 public function hideUserList(){
 $this->view->hide("UserList");
 $this->render();
 }

 public function hideContent() {
 $this->view->hide("ExampleDescription");
 $this->view->hide("Warning");
 $this->view->hide("UserList");
 $this->render();
 }
}

22

Summary

The section 3 shows the main concepts and techniques useful to handle with the

presentation layer of Web applications. A static page is managed by WebMVC assigning an

HTML file to the predefined View class provided by the framework that will take care of the

visualization. In WebMVC an HTML files is called template because it usually contains some

additional information that instruct the WebMVC engine to do the required job on the

HTML code.

The notion of placeholder allows changing the perspective from a static page to a dynamic

one. By means of a placeholder, we can do a (dynamic) substitution of a string in a

template with another string deriving from data input or processing. In the case of

dynamic visualization, it is necessary to introduce new view classes whose structure

depends on the kind of user interaction to implement.

When a substantial portion of text in a template is interested by a substitution, we can use

a block. A frequent application of this concept is the rendering of a list of records coming

from a database. Blocks can be shown or hidden according to the user interaction

requirements.

4. Model

What is a model?

In an MVC software architecture, a model is a component that has the responsibility for

data management. In other words, the model maintains a repository of data and provides

the methods for data recording and retrieval. It is worthwhile to observe that the

decomposition into the three components of an MVC architecture reflects the approach

of divide et impera in which the controller assumes the role of coordinator that assigns the

tasks of data management and data presentation to the model and view components

respectively. In WebMVC, the definition of a model is similar to that of a controller or a

view; in fact, it is sufficient to extend the framework\Model class. As an example, we can

further discuss the problem of showing a list of people in a browser. In the previous

section, the list was taken from the controller; while this could be convenient when the

problem to solve is of small dimension (we could do without the model), it is more

frequent the case where the data are managed by the model.

23

//Example 4.1.a: The model UserList that returns an array of people names

<?php

namespace models;

use framework\Model;

class UserList extends Model
{
 public function getUsers()
 {
 $users = array (
 array("FirstName" => "John", "LastName" => "Red"),
 array("FirstName" => "Mark", "LastName" => "White"),
 array("FirstName" => "Diana", "LastName" => "Brown"),
);
 return $users;
 }
}

The controller must take into account the coordination of view and model:

 Linking the variable $this->view and $this->model to the corresponding class instances

passing them to the constructor of the framework\Controller class

 Using the instantiated model and view to retrieve and visualize the array of people through

the getUsers() method

The controller retrieves the data from the model; then, calling the view, it arranges the

presentation. Note that the codes of UserList view and user_list_html.tpl are unchanged.

// example 4.1.b: The controller UserList now coordinates model and view.
// It accepts the invocation of showUserList(), takes data from the model passing them
// to the view. Here we reuse the view of example 3.3.b.

<?php
namespace controllers;

use framework\Controller;
use models\UserList as UserListModel;
use views\UserList as UserListView;

class UserList extends Controller
{
 public function __construct() {
 $this->view = new UserListView("user_list");
 $this->model = new UserListModel();
 parent::__construct($this->view,$this->model);
 }

 public function showUserList() {
 $userList = $this->getModel()->getUsers();
 $this->view->setUserList($userList);
 $this->render();
 }
}

24

Database interaction

Having in mind the role of a model and how to use it in an MVC architecture, we can

modify the previous example and retrieve the array of people from a database. Before we

do so, it must be taken into account that:

 WebMVC uses MySqli to interact with the database

 The variable $this->sql, and the methods updateResultSet(), and getResultSet() are

inherited from the framework\Model class

 updateResultSet() executes a query previously stored in the variable $this->sql

 getResultSet() returns the result set of the executed query

 You must configure the file config\application.config.php. Specifically, you must modify the

constants DBHOST, DBUSER, DBPASSWORD, DBNAME and DBPORT

In this example, we modify the UserList classes by taking a set of people from a database.

We assume the availability of a table called "people" containing the same data of the array

$users in the model definition of Example 4.1.a.

 people -> table name

 name -> the first attribute with the person name

 surname -> the second attribute with the family name

For the sake of simplicity, we change only the methods of the previous classes:

// Example 4.2: Changing the classes of Example 4.1 to enable database interaction

// getUsers of model\UserList

public function getUsers() {
 $this->sql = "SELECT * FROM people";
 $this->updateResultSet();
 return $this->getResultSet();
}

// showUserList of controllers\UserList

public function showUserList() {
 $userResultSet = $this->model->getUsers();
 $this->view->setUserList($userResultSet);
 $this->render();
}

// setUserList of views\UserList

 public function setUserList(\mysqli_result $userResultSet) {
 $this->openBlock("User");
 while ($people = $userResultSet->fetch_object()) {
 $this->setVar("FirstName", $people->name);
 $this->setVar("LastName", $people->surname);
 $this->parseCurrentBlock();
 }
 $this->setBlock();

25

}

To run the code, type the URL:

localhost/myproject/user_list/show_user_list

What if you want to execute a SQL query that is different from a select? You can use the

query() method of the model. For example, to insert a person called George in the people

table you should use:

$this->query("insert into people(name) VALUES('George')").

The query() method can execute every type of SQL operation (e.g. insert, update, select

etc). This method can return:

 false, if an error occurred

 true, if no error occurred and the query is not a select

 a result set if no error occurred and the query is a select

Summary

To run an MVC instance of an application we have seen how to:

 create and run a controller and its methods calling them from the URL

 create a views class linking it to a template file

 substitute a dynamic variable to a placeholder inside a template

 declare a block that must be transformed, for example in a list of values, within a template

 create the model class taking the result set from a database of people.

In WebMVC, the flow of control of an MVC application that comprises model, view and

controller is the following:

1. The URL calls a controller specifying one among the alternatives:

1.1 the name of the controller

1.2 the name of the controller and a method without parameters

1.3 the name of the controller and a method with parameters

2. The controller runs retrieving data from the model

3. The data retrieved from the model are sent to the view by the controller

4. The view organizes the data for the presentation.

5. Finally, WebMVC sends the output of the execution to the user.

In the next page, we shall discuss how to organize your project into subsystems.

26

5. System decomposition

One of the purposes of WebMVC is to provide tools that allow software developers to take

advantage of sound principles when they design and implement complex web

applications. An important principle of software engineering is system decomposition that

can be used to split out a software system into smaller interacting parts, called subsystems,

in order to dominate the system complexity.

In WebMVC, the decomposition of a software can be pursued considering several

perspectives. We have already seen how the splitting into model, view, and controller can

be done. MVC is a canonical architectural pattern that can be applied in a great variety of

software applications, and in a certain sense, we can say that the MVC decomposition

pattern can be used for many application domains regardless of their structure.

Another decomposition perspective concerns how to split a software with respect to an

application domain. Consider, for example, a software system that has the purpose to

manage some fundamental functions of an enterprise such as manufacturing and crm

(client relationship management); we call it minierp. After the system design phase made

by the software engineer, the subsystems structure can be represented in WebMVC by

means of two fundamental concepts strictly related to each other. They are:

 a hierarchy of directories;

 the namespace.

For each subsystem, WebMVC uses a directory to physically store all its classes and uses a

namespace to refer each class when it needs to be instantiated and executed; directories

and namespaces must have identical names that are conventionally written in lowercase.

For example, if we decide to implement the subsystem manufacturing we must define:

1. controllers\manufacturing - the directory path where to store classes for the

manufacturing subsystem;

2. controllers\manufacturing - the namespace that we must use when coding each PHP class

of the manufacturing subsystem.

An excerpt of directory structure for the minierp web application is shown in the figure 6.1.

There are now two decomposition levels: the first is the MVC decomposition (directories:

controllers, models, and views/templates) and the second is provided by the structure of

the application domain. Note that we have a replica of the subsystem application names

within the models, views, and controllers directories as well as for the templates directory.

In the minierp software, the initial application domain decomposition is made by the

subsystems crm, and manufacturing; the latter comprises the class Inventory. The

directory controllers is the root directory from which all application controllers for the

defined subsystems can be invoked. This is because in WebMVC the directory controllers is

the entry point to access application software functionalities.

27

Fig. 5.1. The structure of directory for system decomposition.

How to invoke a subsystem controller class

We know that in order to call a controller, we have to write an URL according to the

following formats:

 http://<site>/<controller name>

 http://<site>/<controller name>/<method name>

 http://<site>/<controller name>/<method name>/parName1/parName2/.../parNamen

28

where the automatic conversion from the URL to the class name, method and parameters

works, for example, as follows:

http://site/user_manager/get_user/1 => UserManager->getUser(1).

We extend this convention in order to call a controller class located within a subsystem

using formats like:

 http://site/subsystem/<controller name>/<method name>/parName1/.../parNamen

 http://site/subsystem/.../subsystem/<controller name>/<method name>/parName1/.../parNamen

Managing the inventory record

An example taken from the minierp web application concerns the presentation of an

inventory app whose controller is located within the class manufacturing/Inventory. It is a

simplified version of a software application that aims at the inventory management of a

manufacturing industry. The inventory table is taken from the database named minierp and

is made of the following attributes:

 code -> the record key

 description -> the description of the good maintained in the inventory

 stock -> quantity in stock

The task to retrieve the inventory records is in charge of models\manufacturing\Inventory:

// Example 5.a: The model Inventory takes data from a database table

namespace models\manufacturing;

use framework\Model;

class Inventory extends Model
{
 public function getInventory()
 {
 $this->sql = "SELECT * FROM inventory";
 $this->updateResultSet();
 return $this->getResultSet();
 }
}

Next, the views\manufacturing\Inventory class receives the records retrieved by the model

and proceeds with the substitution of the template placeholders contained

in templates\manufacturing\inventory with the values taken from the records. The Inventory

view takes advantage of the concept of block.

// Example 5.b: The view Inventory manipulates the HTML block named “Part”
// substituting the values retrieved by the model to the placeholders in the block

29

namespace views\manufacturing;

use framework\View;

class Inventory extends View
{
 public function __construct($tplName = null)
 {
 if (empty($tplName))
 $tplName = "/manufacturing/inventory";
 parent::__construct($tplName);
 }

 public function setInventoryBlock($inventoryResultSet) {
 $this->openBlock("Part");
 while ($part = $inventoryResultSet->fetch_object()) {
 $this->setVar("code",$part->code);
 $this->setVar("description",$part->description);
 $this->setVar("stock",$part->stock);
 $this->parseCurrentBlock();
 }
 $this->setBlock();
 }
}

The file inventory.html.tpl simply arranges the output in the form of a table. The block

named Parts states how the record retrieved by the inventory table will be rendered in

output one row at a time by the Inventory view.

// Example 5.c: The template inventory.html.tpl containing the block “Parts”

<!DOCTYPE html>
<html>
<head>
 <title>Inventory</title>
</head>
<body>
 <h1>Inventory</h1>
 <table>
 <thead>
 <th>code</th>
 <th>description</th>
 <th>stock</th>
 </thead>
 <tbody>
 <!-- BEGIN Part -->
 <tr>
 <td>{code}</td>
 <td>{description}</td>
 <td>{stock}</td>
 </tr>
 <!-- END Part -->
 </tbody>
 </table>
</body>
</html>

30

Finally, the code of the Inventory controller coordinates, as usual, the work made by the

model and the view. We remark that the function showInventory() has to be public; it first

invokes the method getInventory() from the model, then it passes the result set to the

method setInventoryBlock() of the view that arranges for the placeholder substitutions

with the values contained in the retrieved records.

// Example 5.d: The Inventory controller.
// The Inventory controller accept a request to show the inventory
// and coordinates the job of model and view to get the result

namespace controllers\manufacturing;

use framework\Controller;
use framework\Model;
use framework\View;

use models\manufacturing\Inventory as InventoryModel;
use views\manufacturing\Inventory as InventoryView;

class Inventory extends Controller
{
 public function __construct()
 {
 $this->view = new InventoryView("/manufacturing/inventory");
 $this->model = new InventoryModel();
 parent::__construct($this->view,$this->model);
 }

 public function showInventory() {
 $inventoryResultSet = $this->model->getInventory();
 $this->view->setInventoryBlock($inventoryResultSet);
 $this->render();
 }
}

Assuming that in the table inventory there are data of components necessary to build a

digital mouse, we can get the output typing:

http://localhost/minierp/manufacturing/inventory/show_inventory

http://localhost/minierp/manufacturing/inventory/show_inventory

31

Fig. 5.2. An inventory of materials for the construction of a mouse.

6. Structuring MVC units

The figures 3.1 and 5.1 outline how the convention that uses the same name for models,

views, and controllers directories and classes can help to reduce the proliferation of names

in complex projects.

There is another reason to give the same name to model, view, controller classes, and the

template relied to the view. All these parts (as well as other code logically related to these

parts such as CSS, JavaScript and other resources) can be perceived as a conceptual unit,

identified by a name, devoted to the solution of a problem. In other words, we can abstract

the aggregate of different cooperating software parts into a single logical unit that receives

a name that evokes the problem to solve.

In WebMVC, an MVC unit is a logical aggregate of software parts that cooperate to solve a

problem. For example, we can indicate the set of classes named Inventory in examples 5.a

(the model), 5.b (the view), 5.d (the controller), and the template inventory shown in 5.c as

a whole that we identify as the Inventory MVC unit:

 Inventory = { controllers\Inventory,

 models\Inventory

 views\Inventory,

 templates\inventory }

32

This abstraction step is very useful when we need to construct complex software systems

using the techniques discussed in next sections. Indeed, it is not necessary that all the

software parts of an MVC unit share the same name. Frequently, the name of one or more

parts differs from the name chosen for the MVC unit; this is the case when a software part

already existing is reused to simplify the development of an MVC unit. For example, the

MVC unit ToggleUserList of section 3.4 is represented by:

ToggleUserList = { controllers\ToggleUserList,

 views\UserList,

 templates\toggle_user_list }

Web applications can be complex to design and realize. In addition to the two-level

decomposition discussed so far (MVC decomposition and application subsystems),

WebMVC provides some techniques for structuring MVC units that can be used to easy

the implementation of the control flow of complex web applications. We discuss these

techniques in the next sections:

 Coding guidelines

 Hierarchical MVC

 Controller inheritance

6.1. Coding guidelines

Coding guidelines refers to the way we can structure the parts of an MVC unit in order to

get:

- generality through a coding pattern that can be taken into consideration for reuse,

inheritance and automatic generation of code as well;

- an additional decomposition technique that split the responsibility of a controller

constructor into two parts: the constructor and the method autorun().

A simple expedient to get a reusable view class is to pass it a template as parameter. This

technique has been used for the class views\UserList defined in section 3.3 and reused in

example 3.4. If we consider the definition of a controller, we have the opportunity to pass

two references: $view and $model; in this case, the controller uses these particular instances.

However, when we do not pass these references, the controller has a default model and a

default view, retrieved by means of the methods getView() and getModel(), that qualify its

standard behaviour.

33

The code of example 6.1.1 generalizes that described in example 4.1.b. It also shows an

additional feature of WebMVC: the division of responsibilities between the constructor and

the protected method autorun(). This method is automatically invoked after the

constructor execution. A typical way to exploit this separation of responsibilities is:

- the constructor create/ retrieves objects, establishing relations among them, and

predisposing the things to start the computation;

- the autorun() method perform the computation.

In other words, the costructor is focused on static properties of a system (the parts and the

relations among them) whereas the autorun() is focused on the dynamic properties of a

system expressed in terms of relation activations (running a controller, invoking a method,

performing a loop, etc.).

// Example 6.1.1: The generalized version of the controllers\UserList

<?php

namespace controllers;

use framework\Controller;
use models\UserList as UserListModel;
use views\UserList as UserListView;

class UserList extends Controller
{
 public function __construct(View $view=null, Model $model=null) {
 $this->view = empty($view) ? $this->getView() : $view;
 $this->model = empty($model) ? $this->getModel() : $model;
 parent::__construct($this->view,$this->model);
 }

 protected function autorun ($parameters=null) {
 $userList = $this->model->getUsers();
 $this->view->setUserList($userList);
 }

 public function getView() {
 $view = new UserListView("/user_list");
 return $view;
 }

 public function getModel() {
 $model = new UserListModel();
 return $model;
 }
}

The coding pattern exemplified in the example 6.1.1, is also used by a skeleton class

generator provided by WebMVC. A natural consequence deriving from the automatic

invocation of autorun() is that we can assign to it the main (dynamic) responsibility of a

class. In this way, we can invoke the execution of the main behaviour of a class without

34

explicitly calling a method. For example, the autorun() method of example 6.1.1 plays the

role of the method showUserList() of example 4.1.b (or of the modified version of example

4.2), but is automatically invoked. Now you can try the execution of this version of the

controller UserList typing:

localhost/myproject/user_list

6.2. Hierarchical MVC

Until now, we have executed examples involving a single controller. In the web, it is usual

to divide an HTML page into several sections each one with a different purpose (e.g. a

gallery of images, a navigation bar etc...) and different interaction modalities. Usually, some

of these sections are reused in different pages. A design principle that can be used to easy

the management of different interactions that a user can have with a page is the

hierarchical decomposition of MVC units (HMVC). From the point of view of the flow of

control, the focus is on the hierarchy of controllers; therefore, the composition of MVC

units can also be regarded as controller composition. In WebMVC, a controller has the

capability to use other controllers; this allows building a hierarchy that brings the benefits

of complexity reduction and software reuse. Controller composition is useful, for example,

when an HTML page presents two or more parts that require different kinds of user

interaction, and an ad hoc controller is necessary to manage each of these parts. Usually, a

given controller acts as a supervisor, and the other controllers perform the remaining

control flow each on the assigned part. When a supervisor controller invokes a subordinate

one, it implicitly invokes the execution of an MVC unit typically made of controller, model,

view, and template, and eventually other related code.

Suppose that we have the problem to manage the user interaction deriving from the

presentation of this page:

Fig. 6.1. A page with two logical parts: a welcome message and a navigation bar.

35

The page is made of two parts; the first output a welcome message and the second

exposes a navigation bar that requires some input interaction. We can use two MVC units

to manage the GUI. We call the first CompositePage, assigning it the responsibilities to show

a welcome message and to supervise the work of the second MVC unit, called

NavigationBar, that manages instead the user input interaction. NavigationBar and

CompositePage are MVC units that aggregate the following code respectively:

NavigationBar = { controllers\NavigationBar, // ex. 6.2.a

 views\NavigationBar, // ex. 6.2.b

 templates\navigation_bar } // ex. 6.2.c

CompositePage = { controllers\CompositePage, // ex. 6.2.d

 models\CompositePage // ex. 6.2.e

 views\CompositePage, // ex. 6.2.f

 templates\composite_page, // ex. 6.2.g

 {NavigationBar} } // subordinate MVC unit

The MVC unit NavigationBar placed within the aggregate that comprises CompositePage,

highligths that NavigatonBar is a subordinate MVC unit. First, we present its code:

// example 6.2.a: The NavigationBar controller that manages the user interaction.
// This class is used by the controller CompositePage.

<?php

namespace controllers;

use framework\Controller;
use views\NavigationBar as NavigationBarView;

class NavigationBar extends Controller
{

 protected function autorun($parameters = null)
 {
 $this->view = new NavigationBarView();
 }
}

// Example 6.2.b: The view class NavitationBar. This view
// loads the template navigation_bar.

<?php

namespace views;

use framework\View;

class NavigationBar extends View
{
 public function __construct($tplName = null)
 {
 if (empty($tplName))
 $tplName = "/navigation_bar";

36

 parent::__construct($tplName);
 }

}

<!-- Example 6.2.c: The template navigation_bar.html.tpl. It exposes the GUI to
 navigate the application -->

<nav class="navbar navbar-default">
 <div class="container">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle collapsed" data-toggle="collapse"
 data-target="#navbar" aria-expanded="false" aria-controls="navbar">
 Toggle navigation

 </button>
 minierp system
 </div>
 <div id="navbar" class="navbar-collapse collapse">
 <ul class="nav navbar-nav">
 <li class="active">Home
 Contacts us
 Exit

 </div>
 </div>
</nav>

The controller CompositePage supervises the whole job. The flow of control starts in the

constructor that creates the view and the model instances necessary to CompositePage to

solve the presentation problem of fig. 6.1. Then, the flow proceeds in the method autorun()

that performs the following steps:

1. the model returns the welcome message passed to the view;

2. an instance of the controller NavigationBar is created with the purpose to manage the

user interaction by means of a navigation bar;

3. the method bindController(), of the framework class Controller, is invoked. This method

instruct the framework to use the MVC unit NavigationBar for the GUI necessary to

navigate the page of fig. 6.1.

// Example 6.2.d: The CompositePage controller.
// this class comprises the controller NavigationBar.

<?php

namespace controllers;

use framework\Controller;
use framework\Model;
use framework\View;

37

use models\CompositePage as CompositePageModel;
use views\CompositePage as CompositePageView;
use controllers\NavigationBar;

class CompositePage extends Controller
{
 protected $view;
 protected $model;

 public function __construct()
 {
 $this->view = new CompositePageView("/composite_page");
 $this->model = new CompositePageModel();
 parent::__construct($this->view,$this->model);
 }

 protected function autorun($parameters = null)
 {
 $message = $this->model->getMessage();
 $this->view->setVarMessage($message);
 $navigation = new NavigationBar();
 $this->bindController($navigation);
 }
}

Exercise: write the generalized version of CompositePage according to the code pattern of

example 6.1.1.

The model simply returns a message:

// Example 6.2.e: The Model class Composite Page; it simply returns a message.

<?php

namespace models;

use framework\Model;

class CompositePage extends Model
{
 public function getMessage()
 {
 return "This example shows the composition of two controllers:
 CompositePage and NavigationBar. The first manages the whole page
 and the second the control flow of the navigation bar";
 }
}

<?php

// Example 6.2.f: The view class CompositePage. This view loads the template
// composite_page and inject in it the welcome message returned by the model.

namespace views;

use framework\View;

38

class CompositePage extends View
{
 public function __construct($tplName = null)
 {
 if (empty($tplName))
 $tplName = "/composite_page";
 parent::__construct($tplName);
 }

 public function setVarMessage($value)
 {
 $this->setVar("Message",$value);
 }

}

From the point of view of the composition of WebMVC controllers, the relevant aspect of

the template composite_page.html.tpl is the placeholder contained in the body section:

{Controller:NavigationBar}.

When the supervisor controller CompositePage described in example 6.2.d invokes the

method bindController($navigation), it instruct the framework to use the controller class

NavigationBar in the point where appears the placeholder {Controller:NavigationBar}.

The effect of bindController() is that:

a) the placeholder {Controller:NavigationBar} is replaced by the template navigation_bar

of example 6.2.; thus, we obtain a richer template that allows the user to navigate the

page;

b) The MVC unit NavigationBar manages the GUI for the page navigation.

<!—Example 6.2.g. The template composite_page.html.tpl declares the use of the
controller NavigationBar to manage the section devoted to user interaction -->

<!DOCTYPE html>
<html>
<head>
<title>Composite Page</title>
 <!—- PUT THE SHARED CODE 3.4.1 HERE -->
</head>
<body>

{Controller:NavigationBar}

<div class="container">
 <h1>Welcome</h1>
 <p>{Message}</p>
</div>

<!—- PUT THE SHARED CODE 3.4.2 HERE -->
</body>

39

</html>

6.3. MVC inheritance

The second technique that we can use to structure a controller is MVC inheritance. It is just

a particular case of the standard class inheritance of OOP where a child controller inherits

from a father controller that implicitly makes available a complete MVC unit to the child.

Again, since the focus is on the controller, we can use the term controller inheritance as

well. This technique can be useful when we already have an MVC solution of a problem

that can be used “as is” or with little modifications to solve a wider problem. To illustrate

how controller inheritance works, consider again the problem of showing/hiding a list of

people, and suppose that we already have a solution for the problem “show a list of

people”. We can take as reference the solution proposed in section 4 for the presentation

of a list of users with a complete MVC unit made of:

UserList= { controllers\UserList, // ex. 6.1.1,

 views\UserList, // ex. 3.3.b, as modified by ex. 4.2

 model\UserList // ex. 4.1.a, as modified by ex. 4.2

 templates\user_list } // ex. 3.3.a

Having the problem of showing/hiding a list of people, we can write a new version of

ToggleUserList that now use controller inheritance. The controller class ToggleUserList extends

the controller UserList, and therefore it reuse the MVC unit UserList. Because the GUI of fig.

3.3 is managed by the template toggle_user_list, the only thing that we have to do is to

replace user_list with toggle_user_list. The MVC unit ToggleUserList represents MVC

inheritance as follows:

ToggleUserList= { controllers\ToggleUserList,

 UserList:controllers\UserList // ToggleUserList inherits

 UserList:views\UserList, // the MVC unit UserList

 UserList:model\UserList

 templates\toggle_user_list }

The code of the controller ToggleUserList is shown below. The template code

toggle_user_list is loaded by the method loadCustomTemplate provided by the

framework\View class; the code of toggle_user_list is that reported in ex. 3.4.a.

The inheritance is used when the controller invokes the parent::autorun() method. By

convention, autorun() implements the main responsibility of a class so that the class

ToggleUserList ask to the controller UserList to do its job, that is, to show a list of users

using the received template toggle_user_list.

// Example 6.2. The variant of ToggleUserList with hiding/showing capabilities.
// Now we extend the already existing class UserList.

40

<?php

namespace controllers;

use framework\Controller;
use models\UserList as UserListModel;
use views\UserList as UserListView;

class ToggleUserList extends UserList

{
 public function showUserList() {
 $this->view->loadCustomTemplate("templates/toggle_user_list");
 parent::autorun();
 $this->view->hide("Warning");
 $this->render();
 }

 public function hideUserList(){
 $this->view = new UserListView("/toggle_user_list");
 $this->view->hide("UserList");
 $this->render();
 }

 public function hideContent() {
 $this->view = new UserListView("/toggle_user_list");
 $this->view->hide("ExampleDescription");
 $this->view->hide("Warning");
 $this->view->hide("UserList");
 $this->render();
 }
}

7. Software Components

Reusing architectures, design patterns, and off-the-shelf components can significantly

reduce the development effort required to deliver a system (Brugge, Dutoit 2014). People

responsible for the decision about the better strategies to choose during the software

development, are concerned with the problem of how much reuse must be taken into

consideration. In general, there are several possibilities:

 Architecture reuse. It is the case where a project responsible, for example a project

manager or a software architect, decide to adopt an already existing software

architecture when it is suitable to develop the software project.

 Design pattern reuse. Design pattern provide solutions to partial design problems.

Design pattern reuse is similar to architecture reuse but the usability range is

typically restricted to a well-established design aspect. [Gamma et. al., 1994]

41

 Framework reuse. Typically, a framework is shared among several projects. Even if

the framework impose some constraint, because of its standard way to build and

deploy applications, these constraint are usually beneficial in terms of orderly

development, knowledge sharing and effort alignment.

 Component reuse. Components of an application, ranging in size from subsystems

to single objects, may be reused.

In Sommerville, you can find a discussion about the benefits of component-based software

engineering. The following definition of software component is due to Szypersky:

 “A software component is a unit of composition with contractually-specified interfaces and

explicit context dependencies only. A software component can be deployed independently

and is subject to composition by third parties.”

A widely used definition is due to UML:

“A modular part of a system, that encapsulates its content and whose manifestation is

replaceable within its environment. A component defines its behavior in terms

of provided and required interfaces".

Fig. 7.1. The UML representation of a software component.

A component may be replaced by another if and only if their provided and required

interfaces are identical. This idea is the underpinning for the plug-and-play capability

of component-based systems and promotes software reuse.

For recurring problems occurring during the implementation of data intensive applications,

WebMVC provides software components that can be reused to easy the software

development. In WebMVC, a component is just like a ready to use MVC unit, that exhibits a

https://en.wikipedia.org/wiki/Modular
https://en.wikipedia.org/wiki/System
https://en.wikipedia.org/wiki/Built_environment
https://en.wikipedia.org/wiki/Behavior
https://en.wikipedia.org/wiki/Interface_(computer_science)
https://en.wikipedia.org/wiki/Plug-and-play
https://en.wikipedia.org/wiki/Component-based
https://en.wikipedia.org/wiki/Software_reuse

42

recurring behavioural pattern, whose reuse reduce the development effort. The following

sections show how to use the components provided by the framework.

 7.1 Data Repetition

The components provided by the framework are instances of the abstract class Component,

in its turn an instance of the abstract class Controller; therefore, a component is a full-

fledged controller. The simpler component made available by WebMVC is

framework\components\DataRepeater provided by the framework to easy the displaying of a

data coming from a given source. Two possible scenarios where the DataRepeater can be

conveniently used are when: 1) a list of records from a database or

2) data stored in an array, must be provided in output according to a given visualization

structure. In the first example of data repetition, we propose a variant of the MVC unit

UserList= { controllers\UserList, // ex. 4.1.b

 views\UserList, // ex. 3.3.b

 model\UserList, // ex. 4.1.a

 templates\user_list } // ex. 3.3.a

where the source data are retrieved by an array directly maintained by model\UserList.

Given that DataRepeater is a component that populates variables of a template block with

data coming from an array or from a database table, we can compose the variant of

UserList as follows:

UserListDataRepeater = { controllers\UserListDataRepeater, // ex. 7.1.a

UserList:controllers\UserList, // ex. 4.1.b (inheritance)

views\UserList, // ex. 7.1.b

UserList:model\UserList, // ex. 4.1.a (inheritance)

UserList:templates\user_list, // ex. 3.3.a (inheritance)

framework\components\DataRepeater }

where the controller UserListDataRepeater shown in example 7.1.a uses the component

DataRepeater to populate a block and inheritance to extend the controller UserList. The

constructor of DataRepeater takes as parameters: a view, a model, the name of the template

block to manipulate, and a reference to an array. Apparently, the MVC unit

UserListDataRepeater seems more complicated than UserList because it has 6 components

instead of 4. However, the inheritance can be avoided, if you wish, completing the

definition of example 7.1.a with the methods of the controller UserList, and then removing

it from the MVC unit. Furthermore, the definition of views\UserList is somewhat simplified,

as shown in the example 7.1.b; this simplification becomes more evident when we have to

substitute many placeholders in a template.

// example 7.1.a: the controller UserListDataRepeater uses the component DataRepeater

<?php

43

namespace controllers;

use framework\components\DataRepeater;

class UserListDataRepeater extends UserList
{
 public function autorun($parameters = null)
 {

 $users = $this->getModel()->getUsers();

 // DataRepeater passes the values retrieved by the model to the view in order
 // to populate the HTML block named “User”. The second parameter is null
 // because we wish to retrieve our data from the associative array $users and
 // not from a DB. The keys in the array must have the same name of placeholders
 // in the block.
 // With the help of the framework class Controller, the method render()
 // populates the the block ”User”.

 $repeater = new DataRepeater($this->view, null ,"User", $users);
 $repeater->render();

 }

The version of views\UserList is now simplified because of the work aiming at the

population of values within a template is now done by the component DataRepeater.

// example 7.1.b: compare this version of UserList with that of example 3.3.b.

<?php
namespace views;

use framework\View;

class UserList extends View
{
 public function __construct($tplName = null)
 {
 if (empty($tplName)) {
 $tplName = "/user_list";
 }
 parent::__construct($tplName);
 }
}

The second application that uses the component DataRepeater implements a web page that

shows a list of parts from the inventory table of the minierp system. The page contains a

navigation bar and a list of parts from the inventory. In addition to the use of

bindController(), already discussed in section 6.2, the controller InventoryDataRepeater uses

the bindComponent() method provided by the framework class Controller. It plays a role that

is analogous to that of bindController(), described just before example 6.2.g, with the

difference that now the placeholder to substitute in the template has the structure

44

{<component name>:<placeholder name>}.

From a technical point of view, the use of bindComponent() is not strictly necessary for the

component DataRepeater because it has not a matching placeholder in the corresponding

template of example 7.1.e. Indeed, in the code of example 7.1.d we could replace the

instruction

$this->bindComponent($parts); with

$repeater->render();

obtaining the same behaviour. However, bindComponent() is usually necessary to bind a

component to a template as we will show during the discussion of the Paginator

component in section 7.2.

The MVC unit InventoryDataRepeater is aggregated as follows:

InventoryDataRepeater =
 { controllers\manufacturing\InventoryDataRepeater, // ex. 7.1.d

 views\manufacturing\Inventory, // ex. 7.1.b (use Inventory instead of UserList

 // and $tplName=”/manufacturing/inventory”;)

 model\manufacturing\Inventory, // ex. 7.1.c

 templates\manufacturing\inventory, // ex. 7.1.e

 {manufacturing\NavigationBar}, // the MVC unit NavigationBar (hierarchy)

 framework\components\DataRepeater } // the framework component DataRepeater

// Example 7.1.c: The model Inventory. Compare this code with the code of example 5.a.

namespace models\manufacturing;

use framework\Model;

class Inventory extends Model
{
 public function __construct()
 {
 parent::__construct();
 $this->sql = "SELECT * FROM inventory";
 $this->updateResultSet();
 }
}

As usual, the constructor of the controller InventoryDataRepeater of example 7.1.d builds

the necessary structure for the computation. The method autorun() invokes the

component DataRepeater to show a list of records into your browser. DataRepeater passes

the records retrieved by the model to the view in order to substitute the HTML block

named Part with the values of the retrieved record. The fourth parameter is null because

we wish to retrieve data from a DB.

45

// example 7.1.d: the controller InventoryDataRepeater.

<?php

namespace controllers\manufacturing;

use framework\Controller;
use framework\Model;
use framework\View;

use models\manufacturing\Inventory as InventoryModel;
use views\ manufacturing\Inventory as InventoryView;
use controllers\NavigationBar;
use framework\components\DataRepeater;

class InventoryDataRepeater extends Controller
{
 public function __construct(View $view=null, Model $model=null)
 {
 $this->view = empty($view) ? $this->getView() : $view;
 $this->model = empty($model) ? $this->getModel() : $model;
 parent::__construct($this->view,$this->model);
 $navigation = new NavigationBar();
 $this->bindController($navigation);
 }

 protected function autorun($parameters = null) {

 $parts = new DataRepeater($this->view, $this->model, "Part", null);
 $this->bindComponent($parts);
 }

 public function getView()
 {
 $view = new InventoryView("/manufacturing/inventory");
 return $view;
 }

 public function getModel()
 {
 $model = new InventoryModel();
 return $model;
 }
}

// example 7.1.e: the inventory template. It contains a placeholder to bind the
// controller NavigationBar

<!DOCTYPE html>
<html>
<head>
 <title>Inventory Data Repeater</title>
 <!—- PUT THE SHARED CODE 3.4.1 HERE -->

46

</head>

<body>
{Controller:manufacturing\NavigationBar}
 <div class="container">
 <h1>Inventory</h1>
 <div class="table table-responsive">
 <table class="table-bordered">
 <thead>
 <th>code</th>
 <th>description</th>
 <th>stock</th>
 </thead>
 <tbody>
 <!-- BEGIN Part -->
 <tr>
 <td>{code}</td>
 <td>{description}</td>
 <td>{stock}</td>
 </tr>
 <!-- END Part -->
 </tbody>
 <tfoot>
 <tr>
 <td class = "text-center" colspan="9">AllParts</td>
 </tr>
 </tfoot>
 </table>
 </div>

<!—- PUT THE SHARED CODE 3.4.2 HERE -->
</body>
</html>

47

Fig. 7.2. The output of http://localhost/minierp/manufacturing/inventory_data_repeater.

7.2 Pagination

The output of fig. 7.2 shows a list of records starting from the inventory table. Because the

table stores only eleven records, the output fits the web page. However, it is more frequent

the situation where we have much more records to show. In such a case, the programmer

should provide a solution to navigate the file showing one page at a time. This not trivial

task usually occurs many times even in the context of a single software application. Luckily,

WebMVC offers the component Paginator that makes easier the building of paginated

queries.

The following example introduces the MVC entity InventoryPaginator necessary to

implement a solution that shows page by page a list of goods from the inventory table of

the minierp system. Apart the list of goods, the page contains a navigation bar and a

paginator designed to manage the user interface. Paginator is an already available

component designed for reuse; it is implemented, just like the other components provided

by the framework, as an MVC unit. In fig. 7.3.a) the initial page retrieved by the paginator is

shown. Then, when the scenario changes because of the user interaction, the graphical

aspect provided for the pagination changes accordingly as shown in fig. 7.3.b) and 7.3.c).

48

c) Initial page. b) Intermediate page. c) Last page.

Fig. 7.3. The output of http://localhost/minierp/manufacturing/inventory_paginator.

The supervisor MVC unit InventoryPaginator coordinates the work of model and view. It

also coordinates the MVC unit NavigationBar and the components DataRepeater and

PaginatorBootstrap; the class PaginatorBootstrap is charged to handle the GUI that enhance

the graphical aspect during the user interaction. As we shall see in the example 8.2.d,

PaginatorBootstrap extends the component Paginator that has the responsibility to build

the paginated query. In summary, the MVC unit InventoryPaginator aggregates the

following parts:

InventoryPaginator =
 { controllers\manufacturing\InventoryPaginator, // ex. 7.2.a

 model\manufacturing\InventoryPaginator, // ex. 7.2.b

 views\manufacturing\Inventory Paginator, //ex. 7.1.b (use InventoryPaginator instead of

 // UserList and $tplName=”/manufacturing/inventory_paginator”;)

 templates\manufacturing\inventory_paginator, // ex. 7.2.c

 {manufacturing\NavigationBar} , // the MVC unit NavigationBar (hierarchy)

 framework\components\DataRepeater,

 framework\component\bootstrap\PaginatorBootstrap // ex 7.2.d graphics for the pagination

 }

Before going into the details of the code that implements the solution for the pagination

problem, it is convenient to show in fig. 7.4 the structure of the involved classes. The class

diagram emphasizes both the role of the controller InventoryPaginator that acts as a

coordinator, and the hierarchy of required components. For the sake of simplicity, we show

only used methods in the component hierarchy; you can find the details of the solution in

the examples from 7.2.a to 7.2.e.

49

Fig. 8.4. The structure of the InventoryPaginator MVC unit: UML class diagram.

The constructor of InventoryPaginator does the usual arrangements in order to predispose

the structure for computation and user interaction. In the autorun() method, the following

computational steps are performed:

1. the instance $paginator of PaginatorBootstrap is created; the constructor loads the

 corresponding template;

2. the method setName(), inherited by the abstract class Component, sets the variable $name

 to the value Bottom. This value also appears in the template 8.2.c in order to bind the

 component;

3. the inherited attribute resultPerPage of $paginator is initialized to 5 to indicate the

 number of records to show in a page; this value can be changed to adapt the

 visualization to your needs;

4. the attribute $model of $paginator , inherited by the class Controller, is set to

 the model to use (cfr ex. 8.2.b) by setModel();

5. the method buildPagination(), inherited by the component Paginator, paginates the

 query 5 records at a time;

6. the DataRepeater component is created for the displaying of a data coming from the

 model in the template manufacturing\inventory_paginator;

7. the method bindComponent() is called twice:

- to populate the template with data coming from the execution of the query;

50

 - to render the graphic that enable the pagination through user interaction.

// example 7.2.a: The InventoryPaginator controller. It uses: 1) a NavigationBar to
// navigate the minierp application; 2) the components DataRepeater and
// PaginatorBootstrap to show the DB inventory table one page at a time.

<?php

namespace controllers\manufacturing;

use framework\Controller;
use framework\Model;
use framework\View;

use models\manufacturing\InventoryPaginator as InventoryPaginatorModel;
use views\manufacturing\Inventory as InventoryView;
use controllers\manufacturing\NavigationBar;
use framework\components\DataRepeater;
use framework\components\bootstrap\PaginatorBootstrap;

class InventoryPaginator extends Controller
{

 public function __construct()
 {
 $this->model = $this->getModel();
 $this->view = $this->getView();
 parent::__construct($this->view,$this->model);
 $navigation = new NavigationBar();
 $this->bindController($navigation);
 }

 protected function autorun($parameters = null)
 {
 $paginator = new PaginatorBootstrap();

 $paginator->setName("Bottom");
 $paginator->resultPerPage = 5;
 $paginator->setModel($this->model);
 $paginator->buildPagination();

 $parts = new DataRepeater($this->view, $this->model, "Part", null);

 $this->bindComponent($parts);
 $this->bindComponent($paginator);

 }

 public function getView()
 {
 $view = new InventoryView("/manufacturing/inventory_paginator");
 return $view;
 }

 public function getModel()
 {
 // $model = new InventoryModel();
 $model = new InventoryPaginatorModel();

51

 return $model;
 }
}

// example 7.2.b: The InventoryPaginator model. It declares the SQL query to
// retrieve data from the inventory table.

<?php

namespace models\manufacturing;

use framework\Model;

class InventoryPaginator extends Model
{
 public function __construct()
 {
 parent::__construct();
 $this->sql =
<<<SQL
 SELECT
 code,
 description,
 stock
 FROM
 inventory
SQL;
 $this->updateResultSet();
 }
}

// example 7.2.c: The template inventory_paginator for DB data rendering and GUI.

<!DOCTYPE html>
<html>
<head>
 <title>Inventory Pagination</title>
 <!—- PUT THE SHARED CODE 3.4.1 HERE -->
</head>

<body>
{Controller:manufacturing\NavigationBar}
<div class="container">
 <h1>Inventory</h1>
 <div class="table table-responsive">
 <table class="table-bordered">
 <thead>
 <th>code</th>
 <th>description</th>
 <th>stock</th>
 </thead>
 <tbody>
 <!-- BEGIN Part -->
 <tr>
 <td>{code}</td>
 <td>{description}</td>
 <td>{stock}</td>

52

 </tr>
 <!-- END Part -->
 </tbody>
 <tfoot>
 <tr>
 <td class = "text-center" colspan="9">{PaginatorBootstrap:Bottom}</td>
 </tr>
 </tfoot>
 </table>
 </div>

</div>

<!—- PUT THE SHARED CODE 3.4.2 HERE -->
</body>
</html>

The controller InventoryPaginator indirectly uses the component Paginator through the

component PaginatorBootstrap, that is, in its turn, an MVC unit. To get an idea of how the

graphical aspect for the pagination are managed, we report the code of PaginatorBootstrap

and of the corresponding template that you can find in the following directory:

framework/resources/components/bootstrap/paginator

// example 7.2.d: The class PaginatorBootstrap extends the component Paginator. It
// introduces the graphical aspects to improve the GUI. The work for the query
// pagination is done by the Paginator component.

<?php

namespace framework\components\bootstrap;
use framework\components\Paginator;
use framework\View;

class PaginatorBootstrap extends Paginator
{
 public function __construct(View $view = null, Model $model = null)
 {

 if ($view == null) {
 $tpl = "framework/resources/components/bootstrap/paginator";
 $view = new View();
 $view->loadCustomTemplate($tpl);
 }

 parent::__construct($view,$model);

 // Bootstrap customizations
 $this->previous = "glyphicon glyphicon-step-backward";
 $this->next = "glyphicon glyphicon-step-forward";
 $this->first = "glyphicon glyphicon-fast-backward";
 $this->last = "glyphicon glyphicon-fast-forward";
 $this->offModeHidden = true;
 $this->offValue = "nav-item hidden";
 $this->activeFlag = "nav-item active";

53

 }

}

// example 7.2.e: The template paginator used by the component PaginatorBootstrap. The
blocks are shown/hidden accordingly to the user interaction (cfr. Fig. 8.3).

<!-- BEGIN Pagination -->
<nav>
 <ul class="pagination">

 <!-- BEGIN First -->
 <li class="{First_Off}">

 <!-- END First -->

 <!-- BEGIN Prev -->
 <li class="{Prev_Off}">

 <!-- END Prev -->

 <!-- BEGIN Pages -->
 <li class="{is_active}">

 {Page_Number}

 <!-- END Pages -->

 <!-- BEGIN Next -->
 <li class="{Next_Off}">

 <!-- END Next -->

 <!-- BEGIN Last -->
 <li class="{Last_Off}">

 <!-- END Last -->

 <!-- BEGIN Total -->

 {RES:TotalRecords} {TotalRecords}

 <!-- END Total -->

54

</nav>
<!-- END Pagination -->

</html>

8. Internationalization & Localization

The following definitions of internationalization and localizations are taken by the

business dictionary [www.businessdictionary.com]:

Internationalization:

1) Commerce: The growing tendency of corporations to operate across national

boundaries.

2) Marketing and Computing: An approach to designing products and services that are

easily adaptable to different cultures and languages.

Localization:

The practice of adjusting a product's functional properties and characteristics to

accommodate the language, cultural, political and legal differences of a foreign market

or country.

Like other frameworks, WebMVC provides support to write software applications aiming

at reaching a larger audience by means of internationalization and localization. The

definition 2) of internationalization is interpreted in WebMVC how the capability to

build, with little effort, the GUI of a software in different natural languages. This

capability allows the presentation of your application to people of different nations or

with specific visualization requirements.

The term localization is the counterpart of internationalization. Having a product or

service that is ready for the international market, with the term localization we refer to

the process that adapt a product or service to meet the needs of a language, culture or

desired population’s “look-and-feel”. From one side, we can say that the

internationalization focuses on the structure of your application because it builds

several static contents ready to serve people of different nations or culture. On the

other side, the localization process places a user within a context that is near, familiar

and easy to use. It can be regarded as a dynamic aspect that restrict the wide context of

a multilinguistic application to the smaller context suitable for the user. It is trivially to

observe that the most important part of a localization process is the translation of a

word or a text from one language to another, but localization is a bit more. For

example, a message could be written in a completely different manner when we write it

for a nation rather than another one, even if the message conveys the same semantics.

These aspects are considered by WebMVC by means of a standard way to build

http://www.businessdictionary.com/definition/practice.html
http://www.businessdictionary.com/definition/functional.html
http://www.businessdictionary.com/definition/legal.html
http://www.businessdictionary.com/definition/market.html
http://www.businessdictionary.com/definition/country.html

55

multilanguage applications. In example 8.1, we show an MVC Unit, named Localization,

that manages a GUI capable to shift language from a page written in English to a page

written in Italian:

a) Welcome page. c) Pagina di benvenuto

Fig. 8.1. Welcome page for the application minierp: a) english version b) italian version.

WebMVC manages the technicalities of internationalization/localization providing a folder

locales where resource files containing the presentation content can be placed in different

subfolders, one for each natural language. Again, the folder locales has to reflect the structure

of system decomposition that we made for our project myproject/controllers. Because the

folder myproject is simple (with no subsystems) the structure of myproject/locales does not

contains application subsystems. In fig. 8.2, the directories en and it-it contain the resource

files for the translation of the content shown in fig. 8.1. In particular, for the welcome page of

fig. 8.1.a), the file

locales/en/application.txt

contains the translation of the Welcome word, whereas the file

locales/en/controllers/Localization.txt

contains a list of the resource identifiers that will be used to translate the page content. For

example, the resource identifier InfoMessage is linked to the value ”Message from the

localization file: Click Settings->Language settings to change language” that will

replace the placeholder {RES:InfoMessage} appearing in the templates/localization file.

Note that both pages of fig. 8.1 also convey a message coming from the model according to

the current language setting for the browser.

56

Fig. 8.2. The structure of the folder myproject/locales.

The MVC unit Localization aggregates the following parts:

Localization =
 { controllers\Localization, // ex. 8.h

 model\Localization, // ex. 8.e

 views\Localization, // ex. 8.f

 templates\localization, // ex. 8.g

 locales\en\application.txt, // ex. 8.a the “Welcome” string

 locales\en\controllers\Localization.txt, // ex. 8.b English translation for the

 controller Localization

 locales\it-it\application.txt, // ex. 8.c the “Benvenuto” string

 locales\en\controllers\Localization.txt, // ex. 8.d Italian translation for the

 controller Localization

 framework\classes\Locale // The WebMVC class that Manages localization files.

 }

The code of examples 8.a and 8.b shows the resource files for the localization to the English

language:

// example 8.a: The file “locales\en\application.txt” contains the text:

Welcome=Welcome

// example 8.b: The file “locales\en\controllers\Localization.txt” contains the text:

#Comment:Tranlactions for the controller localization
ProjectName=MiniERP
Contacts=Contacts
Setting=Settings
LanguageSettings=Language settings
English=Englilsh
Italian=Italian
GuiSettings=GUI settings
LookAndFeel=Look and Feel
Exit=Exit
InfoMessage=Message from the localization file:
 Click Settings->Language settings to change language.

57

The resource files for the localization to the Italian language:

// example 8.c: The file locales\it-it\application.txt contains the text:

Welcome=Benvenuto

// example 8.d: The file “locales\it-it\controllers\Localization.txt” contains:

#Comment:Traduzioni per la localizzazione del controller
ProjectName=MiniERP
Contacts=Contatti
Setting=Impostazioni
LanguageSettings=Impostazioni lingua
English=Inglese
Italian=Italiano
GuiSettings=Impostazioni GUI
LookAndFeel=Aspetto
Exit=Uscita
InfoMessage=Messaggio dal file di localizzazione:
 Click Impostazioni->Impostazioni Lingua per cambiare lingua.

The remaining parts of the MVC Unit Localization necessary to the rendering of fig. 8.1 are

described below. Assuming that we have an application that retrieves data from a

multilanguage database, the model of example 8.e simulates the multilanguage database using

the associative array $bodiesDb; in the example it contains two messages in English and Italian

respectively.

// example 8.e: The Localization model. It simulates a multilanguage database and

returns a message in the language chosen for the deployment of a software application

<?php

namespace models;

use framework\Model;

class Localization extends Model

{

 private $pageBodies;

 public function __construct()

 { // Simulate a multi language database

 $bodiesDb = array(

 "it-it" => "Messaggio dal model: Contenuto della pagina per la lingua italiana.",

 "en" => "Model message: This is the page content for english language");

 $this->pageBodies = $bodiesDb;

 }

 public function getBody($locale)

 {

 if (@$_REQUEST[LOCALE_REQUEST_PARAMETER])

 $locale = $_REQUEST[LOCALE_REQUEST_PARAMETER];

 return $this->pageBodies[$locale];

58

 }

}

The file wiew\Localization file:

// example 8.f: The Localization view. It loads the template “localization” and sets

the message retrieved by the model.

<?php

namespace views;

use framework\View;

class Localization extends View

{

 public function __construct($tplName = null)

 {

 if (empty($tplName))

 $tplName = "localization";

 parent::__construct($tplName);

 }

 public function setVarBodyMessage($value)

 {

 $this->setVar("BodyMessage",$value);

 }

}

Each line of a localization file has the form (resource identifier=value). During the execution of a

controller (for example the controller Localization), WebMVC will take the resource identifiers

of its localization file one at a time and will proceed to the text substitution for the matching

placeholders in the template. Each placeholder has the form {RES:variable}; therefore, for the

resource identifier that matches a variable, the value string will replace the whole placeholder.

For example, the file of example 8.d

locales\it-it\controllers\Localization.txt

contains the line Contacts=Contatti that matches the placeholder {RES:Contacts} in the file

templates\localization of example 8.g. When the controller Localization runs, WebMVC

modifies the template writing the string Contatti in place of {RES:Contacts} according to the

current setting about the natural language to use.

<-- ex. 8.g the template “localization”. It contains the placeholders with general
 format {RES:variable} where variable will be replaced by a string coming from the
 locale file containing the translation -->

59

<!DOCTYPE html>

<html>

<head>

 <title>Localization example</title>

 <!—- PUT THE SHARED CODE 3.4.1 HERE -->

</head>

<body>

<nav class="navbar navbar-default">

 <div class="container">

 <div class="navbar-header">

 <button type="button" class="navbar-toggle collapsed" data-

toggle="collapse" data-target="#navbar" aria-expanded="false" aria-controls="navbar">

 Toggle navigation

 </button>

 {RES:ProjectName}

 </div>

 <div id="navbar" class="navbar-collapse collapse">

 <ul class="nav navbar-nav">

 <li class="active">Home

 {RES:Contacts}

 <li class="dropdown">

 <a href="#" class="dropdown-toggle" data-toggle="dropdown"

 role="button" aria-haspopup="true" aria-expanded="false">{RES:Setting}

 <ul class="dropdown-menu">

 <li class="dropdown-header">{RES:LanguageSettings}

 {RES:English}

 {RES:Italian}

 <li role="separator" class="divider">

 <li class="dropdown-header">{RES:GuiSettings}

 {RES:LookAndFeel}

 {RES:Exit}

 </div>

 </div>

</nav>

<div class="container">

 <h1>{RES:Welcome}</h1>

 <p>{BodyMessage}</p>

60

 <p>{RES:InfoMessage}</p>

</div>

<!-- PUT THE SHARED CODE 3.4.2 HERE -->

</body>
</html>

Finally, the code of the Localization controller:

// example 8.f: The Localization controller. It uses the method getCurrentLocale() of

the framework class Locale to initialize the LCID (for example “en” or “it-it”), then

coordinates the model and the view. The user localization files are managed behind the

scene by the class Locale.

<?php

namespace controllers;

use framework\classes\Locale;

use framework\Controller;

use framework\Model;

use framework\View;

use models\Localization as LocalizationModel;

use views\Localization as LocalizationView;

class Localization extends Controller

{

 protected $view;

 protected $model;

 public function __construct(View $view=null, Model $model=null)

 {

 $this->view = empty($view) ? $this->getView() : $view;

 $this->model = empty($model) ? $this->getModel() : $model;

 parent::__construct($this->view,$this->model);

 }

 protected function autorun($parameters = null)

 {

 $locale = new Locale();

 $currentLocale = $locale->getCurrentLocale();

 $body = $this->model->getBody($_SESSION["CurrentLocale"]);

 $this->view->setVarBodyMessage($body);

 }

 public function getView()

 {

 $view = new LocalizationView("localization");

 return $view;

 }

61

 public function getModel()

 {

 $model = new LocalizationModel();

 return $model;

 }
}

9 Security

Several functionalities concerning the security of a software application are provided by

WebMVC. They concern the user authentication, the Role Based Access Control (RBAC)

and … In section 9.1 and 9.2 we shall discuss the framework classes for user

authentication and RBAC that a developer can reuse to assign the rights to use

functionalities of a web application.

9.1 Authentication

The user authentication can be done reusing the following Login MVC unit:

Login =
 { controllers\common\Login, // the Login controller;

 framework\User, // ex. 9.1.b: the model with registered users

 views\common\Login, // ex. 9.1.c: the Login view;

 templates\common\login, // ex. 9.1.a: the login template;

 locales\en\controllers\common\Login.txt, // English translation for the

 controller Login;

 locales\it-it\controllers\common\Login.txt, // Italian translation for the

 controller Login;

 framework\classes\ChipherService // The WebMVC class that …

In fig. 9.1.a) we can see the state of a login form before the input of user credentials

while in fig 9.1.b) the form also shows an incorrect login message. The examples of this

section use the localization technique discussed in the previous chapter.

62

a) The login form b)The form after an incorrect input

Fig. 9.1. The login form: a) before the input of user credentials, b) after the input

 of wrong credentials.

From one side, the visualization of fig. 9.1.a) is possible thanks to the hiding of the block

LoginErrorMessage appearing in the templates/common/login.html.tpl managed by the code

of views/common/Login. On the other side, when the login is not successful, the Login

controller shows the “Login incorrect” message retrieving it from the file

locales/en/controllers/common/Login and substituting the message to the placeholder

{RES:LoginError} in the code of example 9.1.a.

// Example 9.1.a. The template login.html.tpl for the login to an application.

<!DOCTYPE html>
<html>
<head>
 <title>{RES:LoginPageTitle}</title>

 <!-- PUT THE SHARED CODE 3.4.1 HERE -->

 <link href="{GLOBAL:SITEURL}/js/spinner/spinner.css" rel="stylesheet">

</head>

<body>
<div class="col-md-12 text-center">
 <h2>Login</h2>
 <h4>{RES:LoginPageTitle}</h4>
 <h5 class="text-danger">{LoginWarningMessage}</h5>
</div>

63

<div class="col-sm-4"></div>

<div role="main" class="col-sm-4 center-block">

 <!-- BEGIN LoginErrorMessage -->
 <div class="alert alert-danger alert-dismissible col-sm-12" role="alert">
 <button type="button" class="close" data-dismiss="alert"><span aria-
 hidden="true">×Close</button>

{RES:LoginError}
 </div>
 <!-- END LoginErrorMessage -->

 <form role="form" id="login_form" class="form" method="post" name="login_form">
 <div class="panel panel-primary">
 <div class="panel-heading">
 <h4><span aria-hidden="true" class="glyphicon glyphicon-
 login"> {RES:LogiFormTitle}</h4>
 </div>
 <div class="panel-body">

 <div class="form-group">
 <label for="LoginFormemail">Email</label>
 <div>
 <input type="text" id="LoginFormemail" class="form-control" maxlength="100"
 value="" name="email" required>
 </div>
 </div>

 <div class="form-group">
 <label for="LoginFormpassword">Password</label>
 <div>
 <input type="password" id="LoginFormpassword" class="form-control"
 maxlength="100" value="" name="password" required>
 </div>
 </div>

 </div>

 <div class="panel-footer text-center">
 <div class="form-group text-right">
 <input type="checkbox" id="remember_me" class="form-cotrol" value="1"
 name="remember_me" > {RES:RememberMeText}
 </div>
 <div class="form-group">
 <input class="btn btn-success btn-lg" type="submit" id="login_form_do_login"
 class="Button" alt="{RES:LoginButtonCaption}"
 value="{RES:LoginButtonCaption}" name="login_form_do_login">

 <!-- <input class="btn btn-warning btn-lg" type="submit"
 id="login_form_do_logout" class="Button" alt="{RES:LogoutButtonCaption}"
 value="{RES:LogoutButtonCaption}"
 name="login_form_do_logout" formnovalidate> -->

 <input class="btn btn-default btn-lg" type="submit" id="login_form_do_cancel"
 class="Button" alt="{RES:CancelButtonCaption}"
 value="{RES:CancelButtonCaption}" name="login_form_do_cancel"
 onclick="history.back()" formnovalidate>
 </div>
 </div>
 </div>

64

 </form>

</div>
<div id="divLoading"></div>
<div class="col-sm-4"></div>
<div class="col-md-12 text-center">
 Copyright © {RES:CopyRightInfo}
</div>

<!-- PUT THE SHARED CODE 3.4.2 HERE -->
<script src="{GLOBAL:SITEURL}/js/spinner/spinner.js"></script>
</body>
</html>

The class framework\User has the responsibility to determine if a user has the right to get

access to a software application. It uses the table user stored in the database that you declared

in the framework/config file, and acts as a model in the Login MVC unit. The designer choice

here has been to reuse the model class framework/User already available from WebMVC.

However, if the application domain requires a different Login MVC unit, you can write your own

version.

// ex. 9.1.b: The model for the Login MVC unit.

<?php

namespace framework;

use framework\classes\ChiperService;

class User extends MySqlRecord implements BeanUser

{

 private $userTable;

 private $fieldUserId;

 private $fieldUserEmail;

 private $fieldUserPassword;

 private $fieldUserRole;

 private $id;

 private $email;

 private $password;

 private $role;

 private $useMd5Password;

 public function getId()

 {

 return $this->id;

 }

 public function getEmail()

 {

 return $this->email;

 }

 public function getPassword()

 {

65

 return $this->password;

 }

 public function getRole()

 {

 return $this->role;

 }

 public function __construct($email=null, $password=null, $useMd5Password=true)

 {

 parent::__construct();

 $this->userTable = USER_TABLE;

 $this->fieldUserId = USER_ID;

 $this->fieldUserEmail = USER_EMAIL;

 $this->fieldUserPassword = USER_PASSWORD;

 $this->fieldUserRole = USER_ROLE;

 $this->useMd5Password = $useMd5Password;

 // If email and password are null try to set

 // them with cookie values.

 // $this->autoLoginFromCookies();

 if (isset($_SESSION["user"])) {

 $this->unserializeUser();

 } elseif ($email != null && $password != null) {

 $this->login($email, $password);

 }

 }

 public function login($email, $password)

 {

 $email = $this::real_escape_string($email);

 $password = $this::real_escape_string($password);

 // TODO use PHP 5.4 password() crypt algo

 if ($this->useMd5Password)

 $password = md5($password);

 $sql = "SELECT * FROM {$this->userTable} WHERE {$this->fieldUserEmail}={$this-

>parseValue($email,'string')} AND {$this->fieldUserPassword}={$this-

>parseValue($password,'string')}";

 if (USER_ENABLED != "")

 $sql .= " AND ". USER_ENABLED . "=1";

 $this->resetLastSqlError();

 $result = $this->query($sql);

 $this->resultSet = $result;

 $this->lastSql = $sql;

 if ($result) {

 $rowObject = $result->fetch_object();;

 $this->id = $rowObject->{$this->fieldUserId};

 $this->email = $rowObject->{$this->fieldUserEmail};

 $this->password = $rowObject->{$this->fieldUserPassword};

 $this->role = $rowObject->{$this->fieldUserRole};

66

 $this->serializeUser();

 return true;

 } else {

 $this->lastSqlError = $this->sqlstate . " - " . $this->error;

 return false;

 }

 }

 public function logout()

 {

 if (isset($_SESSION["user"])) {

 unset($_SESSION["user"]);

 $this->id = null;

 $this->email = null;

 $this->password = null;

 $this->role = null;

 }

 $chiper = new ChiperService();

 $secured = isset($_SERVER["HTTPS"]);

 setcookie($chiper::CREDENTIALS_COOKIE_NAME,"",time() - 3600,

"/",null,$secured,true);

 session_destroy();

 return true;

 }

 public function isLogged()

 {

 if (!empty($this->id) && !empty($this->email) && !empty($this->password)) {

 return true;

 } else {

 return false;

 }

 }

 public function checkForLogin($redirect = null, $returnLink= null,

$LoginWarningMessage=null)

 {

 $this->autoLoginFromCookies();

 $returnLink = (!empty($returnLink)) ? "?return_link=$returnLink": "";

 $LoginWarningMessage=(!empty($LoginWarningMessage)) ?

"&login_warning_message=$LoginWarningMessage": "";

 if (empty($redirect))

 $redirect = SITEURL . "/" . DEFAULT_LOGIN_PAGE;

 if (!$this->isLogged()) {

 header('Location: ' . $redirect . $returnLink . $LoginWarningMessage);

 }

 }

 public function autoLoginFromCookies()

 {

 if (!$this->isLogged()){

67

 $chiper = new ChiperService();

 $parts = $chiper->parseCredentialsCookie($chiper::CREDENTIALS_COOKIE_NAME);

 if (isset($parts) && (count($parts) > 2))

 list($username, $password, $expirationDate) = $parts;

 if (!empty($expirationDate) && $expirationDate > time()) {

 if (!empty($username) && !empty($password)) {

 $this->login($username, $password);

 if ($this->isLogged())

 $chiper->refreshCredentialsCookie($expirationDate);

 }

 }

 }

 }

 private function serializeUser()

 {

 $_SESSION["user"] = serialize($this);

 return true;

 }

 private function unserializeUser()

 {

 $user = unserialize($_SESSION["user"]);

 $this->id = $user->getId();

 $this->email = $user->getEmail();

 $this->password = $user->getPassword();

 $this->role = $user->getRole();

 return true;

 }

}

The view simply handle the login template and set the Login warning message either to the

empty string in the case of successful login, or to the warning message in the case of incorrect

login. (previously customized using config files located in config folder)

<?php
namespace views\common;
use framework\View;
class Login extends View
{
 public function __construct($tplName = null)
 {
 if (empty($tplName))
 $tplName = "/common/login";
 parent::__construct($tplName);
 $this->setLoginWarningMessage();

 }
 protected function setLoginWarningMessage()
 {
 if (isset($_GET["login_warning_message"])) {
 $warningMessage = $_GET["login_warning_message"];
 } else {
 $warningMessage = "";

68

 }
 $this->setVar("LoginWarningMessage", $warningMessage);
 }
}

The code of the controller …

<?php

namespace controllers\common;

use framework\Controller;
use framework\Model;
use framework\View;

use framework\User as LoginModel;
use framework\classes\ChiperService;
use views\common\Login as LoginView;

class Login extends Controller
{
 protected $view;
 protected $model;

 public function __construct(View $view=null, Model $model=null)
 {
 $this->view = empty($view) ? $this->getView() : $view;
 $this->model = empty($model) ? $this->getModel() : $model;
 parent::__construct($this->view,$this->model);
 }

 protected function autorun($parameters = null)
 {
 // Handles login form submission
 if (isset($_POST["login_form_do_cancel"])){
 header("Location: " . SITEURL);
 } else if (isset($_POST["login_form_do_login"])) {
 $this->configCookies();
 $email = $_POST["email"];
 $password = $_POST["password"];
 $this->model->login($email,$password);
 if ($this->model->isLogged()) {
 $this->hide("LoginErrorMessage");
 $returnPage = (isset($_GET["return_link"])) ?
 SITEURL . "/" . $_GET["return_link"] :
 SITEURL;
 header("Location:". $returnPage);
 }
 } else if (isset($_POST["login_form_do_logout"])) {
 $this->model->logout();
 header("Location:". SITEURL);
 } else {
 $this->hide("LoginErrorMessage");
 }
 }

 protected function configCookies()
 {

69

 if (isset($_POST["remember_me"])){
 $email = $_POST["email"];
 $password = $_POST["password"];
 if (!empty($email) && !empty($password)) {
 $chiper = new ChiperService();
 $chiper->setCredentialsCookie($email, $password);
 }
 }
 }

 public function getView()
 {
 $view = new LoginView("/common/login");
 return $view;
 }

 public function getModel()
 {
 $model = new LoginModel();
 return $model;
 }

}

The code of cipher service …

<?php

namespace framework\classes;

class ChiperService
{
 const CREDENTIALS_COOKIE_SALT = CHIPER_CREDENTIALS_COOKIE_SALT;
 const CREDENTIALS_COOKIE_EXPIRATION_DATE = CHIPER_CREDENTIALS_COOKIE_EXPIRATION_DATE;
 const CREDENTIALS_COOKIE_SLIDING_EXPIRATION =
 CHIPER_CREDENTIALS_COOKIE_SLIDING_EXPIRATION;
 const CREDENTIALS_COOKIE_NAME = CHIPER_CREDENTIALS_COOKIE_NAME;

 private function cipherInit($key) {
 global $CipherBox, $CipherKey;
 $temp = '';
 $idx1 = 0;
 $idx2 = 0;
 $keyLength = strlen($key);
 for ($idx1 = 0; $idx1 < 256; $idx1++) {
 $CipherBox[$idx1] = $idx1;
 $CipherKey[$idx1] = ord($key[$idx1 % $keyLength]);
 }
 for ($idx1 = 0; $idx1 < 256; $idx1++) {
 $idx2 = ($idx2 + $CipherBox[$idx1] + $CipherKey[$idx1]) % 256;
 $temp = $CipherBox[$idx1];
 $CipherBox[$idx1] = $CipherBox[$idx2];
 $CipherBox[$idx2] = $temp;
 }
 }

 private function encryptString($inputStr, $key) {
 return strtoupper($this->bytesToHex($this->cipherEnDeCrypt($inputStr, $key)));
 }

70

 private function decryptString($inputStr, $key) {
 return $this->bytesToString($this->cipherEnDeCrypt($this>hexToBytes($inputStr),
 $key));
 }

 public function encryptDBPassword($password) {
 return md5($password);
 }

 private function cipherEnDeCrypt($inputStr, $key) {
 global $CipherBox;
 $result = array();
 $i = 0;
 $j = 0;
 $this->cipherInit($key);
 for ($a = 0; $a < strlen($inputStr); $a++) {
 $i = ($i + 1) % 256;
 $j = ($j + $CipherBox[$i]) % 256;
 $temp = $CipherBox[$i];
 $CipherBox[$i] = $CipherBox[$j];
 $CipherBox[$j] = $temp;
 $k = $CipherBox[(($CipherBox[$i] + $CipherBox[$j]) % 256)];
 $crypted = ord($inputStr[$a]) ^ $k;
 $result[$a] = $crypted;
 }
 return $result;
 }

 private function bytesToString($bytesArray) {
 $result = '';
 foreach ($bytesArray as $byte) {
 $result .= chr($byte);
 }
 return $result;
 }

 private function bytesToHex($bytesArray) {
 $result = '';
 foreach ($bytesArray as $byte) {
 $tmp = dechex($byte);
 $result .= str_repeat("0", 2 - strlen($tmp)) . $tmp;
 }
 return $result;
 }

 private function hexToBytes($hexstr) {
 $result = '';
 $num = 0;
 for ($i = 0; $i < strlen($hexstr); $i += 2) {
 $num = hexdec(substr($hexstr, $i, 1)) * 16;
 $num += hexdec(substr($hexstr, $i + 1, 1));
 $result .= chr($num);
 }
 return $result;
 }

 private function chiperSetCookie($parameter_name, $param_value, $expired = -1,
 $path = "/", $domain = "", $secured = false, $http_only = true)
 {

71

 $secured = isset($_SERVER["HTTPS"]);
 if ($expired == -1)
 $expired = time() + 3600 * 24 * 366;
 elseif ($expired && $expired < time())
 $expired = time() + $expired;
 setcookie ($parameter_name, $param_value, $expired,
 $path, $domain, $secured, $http_only);
 }

 private function chiperGetCookie($parameter_name)
 {
 return isset($_COOKIE[$parameter_name]) ? $_COOKIE[$parameter_name] : "";
 }

 public function setCredentialsCookie($login, $password) {
 $login = $this->encryptString($login, $this::CREDENTIALS_COOKIE_SALT);
 $password = $this->encryptString($password, $this::CREDENTIALS_COOKIE_SALT);
 $result = $this->encryptString($login . ":" . $password . ":" . (time() +
 $this::CREDENTIALS_COOKIE_EXPIRATION_DATE), $this::CREDENTIALS_COOKIE_SALT);
 $this->chiperSetCookie($this:: CREDENTIALS_COOKIE_NAME, $result, time() +
 $this::CREDENTIALS_COOKIE_EXPIRATION_DATE, "/", "", false,true);
 }

 public function refreshCredentialsCookie($expirationDate) {
 if ($this::CREDENTIALS_COOKIE_SLIDING_EXPIRATION)
 {
 if (($expirationDate - ($this::CREDENTIALS_COOKIE_EXPIRATION_DATE / 2)) > time())
 {
 list($login, $password, $expDate) =
 $this->parseCredentialsCookie($this:: CREDENTIALS_COOKIE_NAME);
 $this->setCredentialsCookie($login, $password);
 }
 }
 }

 public function parseCredentialsCookie($cookieName) {
 $cookieValue = $this->chiperGetCookie($cookieName);
 $decryptedCookieValue = (strlen($cookieValue)) ?
 $this->decryptString($cookieValue, $this::CREDENTIALS_COOKIE_SALT) :
 "";
 $pos = strpos($decryptedCookieValue, ':');
 $parts = array();
 if ($pos) {
 $parts = explode(":", $decryptedCookieValue);
 $parts[0] = $this::decryptString($parts[0],$this::CREDENTIALS_COOKIE_SALT);
 $parts[1] = $this::decryptString($parts[1], $this::CREDENTIALS_COOKIE_SALT);
 }
 return $parts;
 }
}

9.2 Role based access control

** to do **

72

4. The Benefits of WebMVC

Since its introduction, thanks to the work of Trygve Reenskaug on the MVC pattern for GUI

software design, the pattern suggested the decoupling of model and view. In this way, it is

possible to associate different views to a given model and display the same data in

alternative formats or different devices. Since then, the technologies are changing but the

MVC pattern remains valid and new considerations can be made when the pattern is used

in the Web. In general, there are two kinds of advantages deriving from the use of the

MVC pattern for the development of complex web applications: technological and

organizational. In fact, the pattern does not impose any constraint on the use of

technology and a designer can decide to use languages and systems that she considers

most appropriate for software application to develop. A natural consequence of the

decision about the use of an MVC pattern, is that the principle of specialization and

coordination will be widely used in both: technological and organizational perspectives.

In general, organizational benefits usually derive from a better organization of work

through specialization and coordination. Specialization concerns the division of a work into

smaller parts and their assignment to specialized workers. This is a standard practice in

modern software development methodologies where the work can proceed in parallel in

relatively little increments assigned to software developers and testing activities can be

pursued as soon as possible. However, the specialization that comes from the division of

work also requires coordination because what has been broken by specialization

(subsystem decomposition) has to be reconducted to unity by coordination (system

integration).

The advantages deriving from the division of work are evident also when we decide to use

the MVC architectural pattern. The technologies used in each subsystem are homogeneous

(e.g. HTML and Javascript for the View part, PHP for the Controller part and PHP / SQL for

the Model part). The code reflects the separation of the professional skills necessary to

deal with the various aspects of development as shown in table 6.1. The code is easier to

design, implement, verify and maintain, and you can use pre-existing code where

appropriate. The same information can be presented in several ways (e.g. textual/graphics)

and on different devices. Note that the controller assumes the role of coordinator of view

and model and this easy the system integration activity necessary to build a software

system perceived as a unity.

Table 6.1. Typical separation of skills and technologies for the development of Web MVC

applications.

https://en.wikipedia.org/wiki/Trygve_Reenskaug

73

References

[1] B. Brugge, A. H. Dutoit, “Object Oriented Software Engineering Using UML, Patterns,

and Java (3rd Ed.), Pearson, 2014.

[2] Ian Sommerville, “Software Engineering (10e), Pearson, 2017.

[3] E. Gamma et al., “Design Patterns, Elements of Reusable Object-Oriented Software”,

Addison Wesley, 1994.

