PHP Web MVC Framework

A lightweight PHP framework for cooperative

development of web applications.

Concepts

Web MVC Framework offers to developers a complete set of Classes for agile development of data intensive web applications.
Generally, it provides facilities for the system decomposition that developers can do at different levels during coding a complex web application.
« Firstly it implements services for realizing the MVC architectural pattern
* However, this is not the only feature provided by the Framework for making the application decomposition.
In general its goal is to organize and manage different views for decomposition of a web application
Architectural
Business scopes, roles and profiles
Content decomposition
Components and software reuse

Technologies requirements and skills

Architectural decomposition: MVC Pattern

Framework implements the MVC pattern allowing developers to decompose complex logic into different layers.

This is a specialization of the well know concept of the Separation of Concern, alias SOC, which thinks to an application like a big set of
computer functionalities (print, display, read/write data, control flow etc.) intercommunicating each other’s but having different system

purposes.

SOC organizes an application by identifying its main purposes and then by grouping all its functions under these ones. MVC, which is a SOC
implementation, classifies its purposes by using three high-level tiers: data, presentation and application logic by providing, respectively,

Model, View and Controller (intercommunicating logic layers).

Therefore, by implementing a web application and by using the MVC pattern, developers must decomposing and grouping its classes

under this layers and must manage communications among them.

Framework offers all base classes for building Model, View and Controller layers of a web application and for simplifying data

communications among them.

Developers may quickly creates the application MVC layers just by extending Framework classes. Then the framework will provide the

necessary services for the instantiation and intercommunication.

class framework

Loader

ey

resultRecord: var

IR RREEE B

—_construct(); war
Butcrung: var
setResultSetivar) var
getResUItSet: var

My SqlRecord

lastSql: war = null
lastSqlEmor: var = null

EEEEREARE]

lastSql{): war
lastSqlEmon(): var

- s

replaceAposBackSlashivar): war

Dispatocher

cumentSubSystem: war

methodParameters: var = amay()

w

TobDispatch: var

oo nstruct); var
dispatch{l: war
parsseUrlAndSetattributes): war

createhMCControllerinstance(l: wvar

contentTodson{var): var

underscore ToCamelCase{var, war): war

bindControllerToSession(): war

My SqlRecord Set

sql: war

GroupBy: war

e

Construct{vary war
autorun{): war

DataRepeater

cumentContent: war
amraywWalues: war = amay()
repeaterType: var = “block™
enableBinding: var = false

bladi|e

setContentTobBlodkdvar): var
setvaluesFromsuray{var): war
setValussFrombodel () war
renderBlock) war

render): war

7

winterfacsa
Bean

selectivar): war
i -

TEER S

Paginator

fullResult: var
totalResult: war
resultFage: var
pages: war
openPage: var = 1
queny: var
resultPerPage: var = 10
firstCaption: wvar Primo™
previousCaption: war

showPageslLinks: war = true

showActivePages: war = trus
showTotalRecord: war = true
activeFlag: var = “disabled™
notActiveFlag: var = ™

urlFPageFarameteriame: var = =

paginationSize: war = 10

T

—_constructlView. Model) war
bBuildPaginaticn{var): var
getPages{var, var): war
renden(): war

wiew: var
model: var
observersCounter: var = 0

observerPollinglntersal: war = 0

subSystem: var =

BABE bbb

___econstruct(Wiew. hModel): war
sethModelModel): var
setViswiVisw): var

render(): var

getivary: wear

getStatefvar): war

setObserverPollinglnterval{var): war

setasObservarivark war
resetCbservers(): war
bindControllenController): war

bindComponentComponent, wark: war

autorun{var): var
getSubSystemd): var
islnvokedControllerfiaini: war

7

Component

name: war

enableBinding: var = trus

et Typel); war
init): war
hasBindingl): wvar

[EEERNE N

Wiewr

tEl: war
blodks: var
cumentElodk: var

(EEEENERTENE AR L]

constructivarn): war
losd Template{var

renden(): var

parse(): var
replaceTpl{var)y war
openBlockivank war
parseCumentBlock): var
closeCumentBlodkl): var

Vi

HTML Template

Searcher

- filters: var

srrayl)

addFilter{var, war, war, wark
remoweFiltervar): war
init(hiodel, Wiew): war

LR

setResctButton{var. vark war
SEtSUbMItBUTLoN{var, vary war
setSearchFormblame{var, var): war

wUSEw

order: war =
sqlBeforeCrderBy: war
isActive: var = false

captionForDirectioninactive: var =
Fiald: war
sqICrderBy: var =
sorterUrParameteridame: war = “sorter
sorterDirectionUrl Parameterhlame: var =

"sortes_direction™

I

___construct{View. Model): war
initModel): var

renden(): war
setCompononentSqgl{flodel): war
computeOrdensaluesi): var

record_add” freadCnly}
record_update” readCnily}
record_delete” resdoniyy
‘ecord_close” readCnly}

DISALLCW_MODE_WITH_DISABLE: var

hide’ readCniy}
"disabled” readOnly}

=
-

+ DELETE: var =

-

- cord_t

+ DISALLOW MCODE_WITH_HIDE:
-

= allowAdd: war

+ allowUpdate: var

=+ allowDelste: var = trus

=

-

=

+ formbdethod: var = "POST™

=

=

-

=

-

- record_delete: war

- record_close:

- reococd_s

+ _ constructiWiew, Modell: wvar
+ initBean): var

+ registerscticnMamefvar, var): wvar
+ disallowAction{var): war

=+ hidescticnivar: war

+ disablefcticn{var): war

- zeHtmil{var)

+ registerPkUrl Parameter(vark

+ getCumentRecord(): war

=+ IsSubmittedl: var

+ doAdicn{Bean) var

+ urlHistoryBadkivar) war

Convention over configuration

Framework adopts a Convention over Configuration paradigm (also known as coding by convention)
that is a software design paradigm that attempt to decrease the number of decisions that a developer, by

using the framework, is required to make without necessarily losing flexibility.

Its conventions automatically provide a global mechanism for handling HTTP requests and for routing,

dispatching them to controllers (response providers).

Framework conventions, in facts, are able to instantiate a user Controller without extra configurations
requirements and also permit classic PHP development approach, where developers can write code into

a single file by using both OOP or Functional paradigm.

This aspect facilitate the integration of the Framework together with any existing application that use a

different development technique.

User browser

Types a request

Routing, dispatching

and auto loadi gle] T

—~,

Web server accepting
requestes

vy

Serving request

dispatching user to an appropriate controller. s tre Rerite angin sonditians The s reaues

contain a PHP script founded into web server?

Framework provides a mechanism for routing and

PHP Soript cutput

Mo, acting rewrite engine rule

Controllery Method,/Para Inwvaiid parameters

I
I
I
I
I
I
I
I |
meters obtsined after |- - -4 - - - 4---q Create MVC instance e
File System {] URL parsing and also I 1 I
load its associsted 1 ~ s
Model, View and 1
Template :
I
I
| Get ocutpul from the
1 instantiated
: controller
1
b -~

, l’ R:s:?::::‘:":p ‘i Run the php script cointaned into the
Classes’ auto loader also simplify the objects creation by | | reauesies HITP URL
—B : Loads framework :
Configuration is stored _Ir configuration :
. B it St
eliminating the needs of files inclusions (PHP require) or amewerk confgine | !
| 1
) . i \|/ Autolosding classes | Dis;_:é_tma Dispetchar MVC
flles dependenC|eS ! on L. . : Exception cutput Instance cutput
° The Loader class runs ____.Il ______ !
PHP classes autcloader | 1
| 1
| 1
deployment Deployment Model I J(Dispmmﬁ e
— | NTTT T
Identifies if URL contsins | [esequertials \ |
TGRIP Server ;::1;:?: ey i] Loads Dispatcher i i
smesiE T L -
request is marked a5 : 1 Parsing and Validating | !
1. hitp request WebServer 8:] 2. fileame.php ;a{:ti R ___4'__ URL request | -
. For the identification is T ! : :
used a commaon URL | : I |
I'l-D‘tafH?l’i wn.ere a req I.I_El | | I 1
4. hitp response ————————————' 4 geate HTML page :ummiﬁ:;;r.:fnm : : : :
methods anrd_ : 1 : : Invalid request
s :;mi;:&:ga I Jwalid request 7 : - >-
2. refrizve resource : 1 : .
: Valid : : !
Is = sub process that : M i ; + Controller not found
runs application : f structureds : : : : Method not found
4 [1 =
l ! 1
| ! 1
| ! 1
| ! 1
| ! 1
| [1
| ! 1
| ! 1
| ! 1
| + T
| ! 1
| [1
| J 1
| 1
| 1
\ ’

Business decomposition:

Namespaces, Sub Systems and Classes

Framework, depending from application’s complexity, lets developers to
organize and decompose application’s classes by using namespaces and sub

systems.

Sub systems allows designing the application’s architecture with a high level

model of decomposition, well known as Systems Decomposition.

System Decomposition looks at business logic decomposition of an

application.

It differs from the MVC decomposition, which is principally oriented to the
computer functions concern like, for example, file system functions, memory

management, database, GUI functions and so on.

Sub systems Decomposition

controllers
+ Home
|j+|1|5t{:mers
D"‘EEJE
|
I sales
I + Invoice
I'_"--———————T‘:H' + Order
I
I
i (from conirollers)
I
: customers
I =
L___________%:;.. + Customer

{from conirollers)

Logical and physical mappings

Frameworks uses a case sensitive one to one convention for mapping:

namespace -> sub system A Namespace named XYZ identifies a Sub System named XYZ with its own variables scope
sub system ->web server folder A Sub System named XYZ is placed into a folder with the same name

class name -> file A Class name MyClass is placed into a file MyClass.php which is located into a sub system
folder

For example:
* namespace controllers\MySubSystem -> web_root/controllers/MySubSystem

» use controllers\MySubSystem \MyClass -> web_root/controllers/MySubSystem/MyClass.php

Decomposition and separation between front end and

back end technologies

Templating functionalities included into the Framework permits to decuple PHP source code used for the presentation logic from

HTML/CSS source code needed for the GUI design. Both pieces of code are under the responsibility of the View layer and must

coexist inside it.

By using the Framework, will be possible to avoid the mixture of different programming languages when implementing the View.

Developers can build a View by putting the GUI static design into an external and standard HTML file, which acts as a template,

optionally containing some special elements: placeholders and blocks.

A placeholder is just a simple string between braces, for example, {Placeholder} while a block is common HTML code between

special HTMLs comments like:

<!-- BEGIN block --> custom HTML <!-- END block -->

Templating

MVC pattern in conjunction with the Template Engine of

the Frameworks offers another level of application

decomposition oriented to Decupling and Separation of ectnalegies Decompesiier
. ajavasmipts
Technologies. iCuaery
It gives to PHP View functionalities for rendering any data
provided from external sources, like a database, into a GUI ﬂﬁﬁ +Manages and
static design built into an external HTML file. 'EHE"M:L;E;_
by w55
Style

It avoids the mixing of programming languages into a

single source code file and permits to the designers to

build the application design by using only client side
technologies and to developers to builds pure PHP
application without the needs of mixing each other their

respective artifacts.

ﬂ“ o

View

Roles separation

Technically speaking this means that a source code file
written by a developer to implement a specific layer of a
MVC instance will use only one programming language or

side-technology.

Framework avoids the contemporary mixture of server-side
technologies such as PHP, together with client-side ones,

such as HTML, during the writing of a single source code file.

Therefore, each files of an end user application will result to
using only a single side technology and framework will take
care of communications among files, written in different
programming languages, by providing a set of server side

components, classes and methods.

Cattura input;
Mostra output;
Gestisce l'interazione
dell’'utente con la Ul.

Mediazione tra View e
Model;

Trattamento
Input/Output;

Logica applicativa.

Interfacciamento alle
fonti di Dati;
Rappresentazione delle
strutture e della logica di
Business.

XHTML per la UL

Web designer con

Puo contenere competenze primarie in
riferimenti a: grafica web, Ul (Skill:
. Fogli di Stile HTML, CSS, JAVASCRIPT)
CSS
o Script in
linguaggio
JavaScript
PHP Analisti/Programmatori
(Skill: PHP)
PHP, SQL Esperti del dominio di

applicazione, progettisti,
ing. soft. (Skill: PHP, DB)

Hierarchical content decomposition

Framework permits developers to nesting controllers by enforcing a Hierarchical Content Decomposition concept.

For example, developers can build a complex application’s page by decomposing it into multiple sections implemented by

different child controllers and nested into a single root controller representative of the HTML page.

Each of child controllers is, potentially, a runnable stand-alone MVC instance and, optionally, developers can reuse it inside a

different root controller,

By requesting the execution of the root controller, Framework will render it automatically together with all its child and nested

controllers.

There is no limit for the nesting level of controllers into the hierarchy. It exclusively depends from the application’s need or from

a good decomposition analysis of the application’s scenarios.

A hierarchical MVC use case

A typical example of use (and reuse) of MVC hierarchy is an Content Decompasition
Mawigaticn
ecommerce application where common section, like the Controller
Header Controller
toolbar, page footer and site navigation, must be present
into different application’s pages like browse products or
Legin Controller
product’s detail. Home Page
Controller
cpe e . . Content
Developers have the facilities to build and test those child Controller
controllers individually. Then they may compose the root
scenarios by assembling them into controller classes
designed as root. Framework offers facilities for nesting Footer Controller

controllers in a very simple way. In fact, developers can build

a controllers’ hierarchy simply by putting a special
placeholder for its child controller into the View layer of the

root controller. Framework will do the rest.

Component based decomposition and reuse

The Component Based Development, used for building many Framework’s features, permits to developers another more level of

applications decomposition and software reuse.
Framework’'s components, in fact, realizes common Aspects that can occurs, in a similar way, into different web applications.

Many of these aspects are regarding database, for example: data listing, data listing and sorting, data listing and filtering, data listing

and pagination, record management and common table’s operations for select, insert, delete and update records.

Framework offers a set of pre-built components for implementing the necessary server logic for these common database management

aspects.

These components are itself MVC objects with a Controller, are easy to use and developers can aggregate them into a root controller

by using a composite criteria for building complex application pages.

A component GUI can also easily adapted or replaced to reflect the application’s experience simply by modifying or replacing its HTML

template with a custom one. Component's server logic will remain fully reusable without the need of any source code modifications.

Category

'234557’

Id Category Ji

Accounts
Accounts
Accounts
Accounts
Accounts
Accounts
Address_Cache
ACD_Index

ACD_Index

¥ ¥ B O ¥ ¥ OB ¥ ¥ O H

ACD_Index

The Acl Type

g8 9 10

| Search | | Show aII|

M M Totals reconds 413

The Acl Type

module
module
module
module
module
module
module
module
module

module

Compenent Based Development and Decompasition

Searcher 3:]
-
-
-
-
-
-
-~
-~
-
f..-l"
- sorer 8]
-
-
1. =
= _'__-—' &
-l--"-..-
Browse Customers Controller | ==~ -
1
| 1
1. e
= T Datalist E:]
1-\.
‘ul“ .1
-y
- 1
LY
L.
‘hh
“ 1
S,
-~
"
B
‘|.,.I
'h\“‘
, 1
=y

" Paginator E:]

Observation of content changing

A common limitation for web application is its intrinsic HTTP state less communication between server and client.

One consequence of a state less application is the inability to update automatically a content when it change and the change is acted outside the application session (for
example by another user that access to a shared database table).

Although the MVC design pattern well describe the updating on content change among its layers, this aspect is hard to implement into a state less application like the web
applications.

Desktop applications are not affected by this difficulty.

Fortunately, for web application, AJAX can provides a valid polling solution to verify the content changing and more, the modern HTML Web Socket capabilities surely
resolve this HTTP limitation.

Of course, developers are able to implements their own AJAX or Web Socket hand coded solutions.
Alternately, they can quickly use a special Framework feature that can do the job automatically without the need of writing any type of custom code.
Controller base class was built by keeping in mind this protocol limitation.

A special Controller method, setAsObserver, realizes the Observation of Content Changing by injecting, automatically, all necessary AJAX code into the template file of
the View to do the job.

WModel

Crbserving Changes

Subject

-+

+ detach{Cbserver): void

4

attach{Observer). void

notify{): void

Web Sodet
Updating

I\

Framework Controller

Observar

chservers® + update(]: void
1.7+ poliSubject]): void

A

Framework View

= ——— -

+ subjectState: String

- observerState: String

B =

+ update{): void
+ pollSubject(). void

Thanks for your attention - Grazie per l'attenzione

Rosario Carvello

rosario.carvello@gmail.com

