PHP Web MVC Framework

A lightweight PHP framework for cooperative

development of web applications.




Concepts

Web MVC Framework offers to developers a complete set of Classes for agile development of data intensive web applications.
Generally, it provides facilities for the system decomposition that developers can do at different levels during coding a complex web application.
« Firstly it implements services for realizing the MVC architectural pattern
* However, this is not the only feature provided by the Framework for making the application decomposition.
In general its goal is to organize and manage different views for decomposition of a web application
Architectural
Business scopes, roles and profiles
Content decomposition
Components and software reuse

Technologies requirements and skills



Architectural decomposition: MVC Pattern

Framework implements the MVC pattern allowing developers to decompose complex logic into different layers.

This is a specialization of the well know concept of the Separation of Concern, alias SOC, which thinks to an application like a big set of
computer functionalities (print, display, read/write data, control flow etc.) intercommunicating each other’s but having different system

purposes.

SOC organizes an application by identifying its main purposes and then by grouping all its functions under these ones. MVC, which is a SOC
implementation, classifies its purposes by using three high-level tiers: data, presentation and application logic by providing, respectively,

Model, View and Controller (intercommunicating logic layers).

Therefore, by implementing a web application and by using the MVC pattern, developers must decomposing and grouping its classes

under this layers and must manage communications among them.

Framework offers all base classes for building Model, View and Controller layers of a web application and for simplifying data

communications among them.

Developers may quickly creates the application MVC layers just by extending Framework classes. Then the framework will provide the

necessary services for the instantiation and intercommunication.
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Convention over configuration

Framework adopts a Convention over Configuration paradigm (also known as coding by convention)
that is a software design paradigm that attempt to decrease the number of decisions that a developer, by

using the framework, is required to make without necessarily losing flexibility.

Its conventions automatically provide a global mechanism for handling HTTP requests and for routing,

dispatching them to controllers (response providers).

Framework conventions, in facts, are able to instantiate a user Controller without extra configurations
requirements and also permit classic PHP development approach, where developers can write code into

a single file by using both OOP or Functional paradigm.

This aspect facilitate the integration of the Framework together with any existing application that use a

different development technique.
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Business decomposition:

Namespaces, Sub Systems and Classes

Framework, depending from application’s complexity, lets developers to
organize and decompose application’s classes by using namespaces and sub

systems.

Sub systems allows designing the application’s architecture with a high level

model of decomposition, well known as Systems Decomposition.

System Decomposition looks at business logic decomposition of an

application.

It differs from the MVC decomposition, which is principally oriented to the
computer functions concern like, for example, file system functions, memory

management, database, GUI functions and so on.
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Logical and physical mappings

Frameworks uses a case sensitive one to one convention for mapping:

namespace -> sub system A Namespace named XYZ identifies a Sub System named XYZ with its own variables scope
sub system ->web server folder A Sub System named XYZ is placed into a folder with the same name

class name -> file A Class name MyClass is placed into a file MyClass.php which is located into a sub system
folder

For example:
* namespace controllers\MySubSystem -> web_root/controllers/MySubSystem

» use controllers\MySubSystem \MyClass -> web_root/controllers/MySubSystem/MyClass.php



Decomposition and separation between front end and

back end technologies

Templating functionalities included into the Framework permits to decuple PHP source code used for the presentation logic from

HTML/CSS source code needed for the GUI design. Both pieces of code are under the responsibility of the View layer and must

coexist inside it.

By using the Framework, will be possible to avoid the mixture of different programming languages when implementing the View.

Developers can build a View by putting the GUI static design into an external and standard HTML file, which acts as a template,

optionally containing some special elements: placeholders and blocks.

A placeholder is just a simple string between braces, for example, {Placeholder} while a block is common HTML code between

special HTMLs comments like:

<!-- BEGIN block --> custom HTML <!-- END block -->
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Hierarchical content decomposition

Framework permits developers to nesting controllers by enforcing a Hierarchical Content Decomposition concept.

For example, developers can build a complex application’s page by decomposing it into multiple sections implemented by

different child controllers and nested into a single root controller representative of the HTML page.

Each of child controllers is, potentially, a runnable stand-alone MVC instance and, optionally, developers can reuse it inside a

different root controller,

By requesting the execution of the root controller, Framework will render it automatically together with all its child and nested

controllers.

There is no limit for the nesting level of controllers into the hierarchy. It exclusively depends from the application’s need or from

a good decomposition analysis of the application’s scenarios.



A hierarchical MVC use case

A typical example of use (and reuse) of MVC hierarchy is an Content Decompasition
Mawigaticn
ecommerce application where common section, like the Controller
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Developers have the facilities to build and test those child Controller
controllers individually. Then they may compose the root
scenarios by assembling them into controller classes
designed as root. Framework offers facilities for nesting Footer Controller

controllers in a very simple way. In fact, developers can build

a controllers’ hierarchy simply by putting a special
placeholder for its child controller into the View layer of the

root controller. Framework will do the rest.



Component based decomposition and reuse

The Component Based Development, used for building many Framework’s features, permits to developers another more level of

applications decomposition and software reuse.
Framework’'s components, in fact, realizes common Aspects that can occurs, in a similar way, into different web applications.

Many of these aspects are regarding database, for example: data listing, data listing and sorting, data listing and filtering, data listing

and pagination, record management and common table’s operations for select, insert, delete and update records.

Framework offers a set of pre-built components for implementing the necessary server logic for these common database management

aspects.

These components are itself MVC objects with a Controller, are easy to use and developers can aggregate them into a root controller

by using a composite criteria for building complex application pages.

A component GUI can also easily adapted or replaced to reflect the application’s experience simply by modifying or replacing its HTML

template with a custom one. Component's server logic will remain fully reusable without the need of any source code modifications.
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Observation of content changing

A common limitation for web application is its intrinsic HTTP state less communication between server and client.

One consequence of a state less application is the inability to update automatically a content when it change and the change is acted outside the application session (for
example by another user that access to a shared database table).

Although the MVC design pattern well describe the updating on content change among its layers, this aspect is hard to implement into a state less application like the web
applications.

Desktop applications are not affected by this difficulty.

Fortunately, for web application, AJAX can provides a valid polling solution to verify the content changing and more, the modern HTML Web Socket capabilities surely
resolve this HTTP limitation.

Of course, developers are able to implements their own AJAX or Web Socket hand coded solutions.
Alternately, they can quickly use a special Framework feature that can do the job automatically without the need of writing any type of custom code.
Controller base class was built by keeping in mind this protocol limitation.

A special Controller method, setAsObserver, realizes the Observation of Content Changing by injecting, automatically, all necessary AJAX code into the template file of
the View to do the job.
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